Jellyfish are among the widely distributed nature creatures that can effectively control the fluidic flow around their transparent soft body, thus achieving movements in the water and camouflage in the surrounding environments. Till now, it remains a challenge to replicate both transparent appearance and functionalities of nature jellyfish in synthetic systems due to the lack of transparent actuators. In this work, a fully transparent soft jellyfish robot is developed to possess both transparency and bio-inspired omni motions in water. This robot is driven by transparent dielectric elastomer actuators (DEAs) using hybrid silver nanowire networks and conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/waterborne polyurethane as compliant electrodes. The electrode exhibits large stretchability, low stiffness, high transmittance, and excellent conductivity at large strains. Consequently, the highly transparent DEA based on this hybrid electrode, with Very-High-Bond membranes as dielectric layers and polydimethylsiloxane as top coating, can achieve a maximum area strain of 146% with only 3% hysteresis loss. Driven by this transparent DEA, the soft jellyfish robot can achieve vertical and horizontal movements in water, by mimicking the actual pulsating rhythm of an . The bio-inspired robot can serve multiple functions as an underwater soft robot. The hybrid electrodes and bio-inspired design approach are potentially useful in a variety of soft robots and flexible devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/soro.2022.0027 | DOI Listing |
Int J Biol Macromol
January 2025
Key Lab of Paper Science and Technology of Ministry of Elucation, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:
Environmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C-Priamine (1074).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of System Dynamics and Friction Physics, Institute of Mechanics, Technische Universität Berlin, 10623 Berlin, Germany.
In this research, the adhesive contact between a hard steel and a soft elastomer cylinder was experimentally studied. In the experiment, the hard cylinder was indented into the soft one, after which the two cylinders were separated. The contact area between the cylinders was elliptical in shape, and the eccentricity of this increased as the angle between the axes of the contacting cylinders decreased.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran.
One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of gelatin-chitosan-based biopolymer layers using zinc oxide (ZnO) and graphene oxide (GO) nanoparticles combined with spermidine to enhance their mechanical, physical, and thermal properties.
View Article and Find Full Text PDFSci Data
January 2025
Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany.
Results of scientific work in chemistry can usually be obtained in the form of materials and data. A big step towards transparency and reproducibility of the scientific work can be gained if scientists publish their data in research data repositories in a FAIR manner. Nevertheless, in order to make chemistry a sustainable discipline, obtaining FAIR data is insufficient and a comprehensive concept that includes preservation of materials is needed.
View Article and Find Full Text PDFDigit Health
January 2025
Civil Engineering Department, Daffodil International University, Dhaka, Bangladesh.
Objective: To improve the accuracy and explainability of skin lesion detection and classification, particularly for several types of skin cancers, through a novel approach based on the convolutional neural networks with attention-integrated customized ResNet variants (CRVs) and an optimized ensemble learning (EL) strategy.
Methods: Our approach utilizes all ResNet variants combined with three attention mechanisms: channel attention, soft attention, and squeeze-excitation attention. These attention-integrated ResNet variants are aggregated through a unique multi-level EL strategy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!