Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solidification/stabilization (S/S) is the prevalent remediation technology for the treatment of heavy metal contaminated soils (HMCS). However, under the stress of complex surrounding environments, S/S effectiveness tends to deteriorate and freezing-thawing is one of the most influential natural forcings. The different proportions of cement, lime, and fly ash were used as the compound curing agents to treat solidified/stabilized HMCS with varying levels of lead contamination. The resulting samples were subjected to up to 180 freeze-thaw cycles (F-T) (1 day per cycle). Unconfined compressive strength (UCS) tests and semi-dynamic leaching tests were performed after F-T to explore the strength evolution of compound solidified/stabilized lead-contaminated soils (Pb-CSCS) and the chemical stability of the lead within. The results show that the F-T duration changes the strength deterioration mechanism of Pb-CSCS under F-T. There has been a shift in the main influencing factor from the promoted curing agent hydration by short-term F-T to the structural damage of the specimen induced by prolonged F-T. The variations in leachate pH, lead leachability, and diffusion ability with progressing F-T revealed a degradation effect of the changes in the physical states of water and crack propagation brought by F-T. These unfavorable changes in soil structure and chemistry reduce the acid resistance of Pb-CSCS. Notably, fly ash and cement facilitate the strength maintenance of Pb-CSCS under long-term F-T conditions. Curing formulations that included both cement and fly ash significantly increased the UCS of treated soils by up to 80.5% (3 F-T) under short-term F-T. In contrast, the curing formulation without fly ash lost 51.8% of its strength after 180 F-T conditions. For lead stabilization, cement and especially lime are favored. The results showed a 25% increase in the total proportion of lime and cement in the curing agent formulation, leading to a 41.4% reduction of lead leaching risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-24881-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!