Colorectal cancer (CRC) is one of the most common malignancies worldwide; however, the potentially possible molecular biological mechanism of CRC is still not completely comprehended. This study aimed to confirm candidate key hub genes involved in the growth and development of CRC and their connection with immune infiltration as well as the related pathways. Gene expression data were selected from the GEO dataset. Hub genes for CRC were identified on the basis of differential expression analysis, weighted gene co-expression network analysis (WGCNA), and LASSO regression. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) were applied to reveal possible functions of the differential genes. Single-sample GSEA (ssGSEA) was implemented to identify the relationship between immune cells infiltration and hub genes. Two hundred and sixty-two differentially expressed genes (DEGs) were identified. Three modules were acquired based on WGCNA, and the blue module presented the highest relevance with CRC. Ten hub genes (AQP8, B3GALT5, CDH3, CEMIP, CPM, FOXQ1, PLAC8, SCNN1B, SPINK5, and SST) were acquired with LASSO analysis as underlying biomarkers for CRC. Compared with normal tissues, CRC tissues presented significantly higher numbers of CD4 T cells, CD8 T cells, B cells, natural regulatory T (Treg) cells, and monocytes. The functional enrichment analyses demonstrated that hub genes were primarily enriched in metabolic process, inflammatory-related, and immune-related response. Ten hub genes were identified to be involved in the occurrence and development of CRC and may be deemed as novel biomarkers for clinical diagnosis and treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-022-00949-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!