Caffeic acid is a phenolic secondary metabolite from plants, which is known for its antioxidant properties. The effective mitigation of methanol-induced oxidative stress by caffeic acid depends on the direct radical scavenging as well as the formation of new metabolites oxidative degradation. Herein, thermodynamic and kinetic aspects of the oxidative degradation pathway of caffeic acid in the presence of radical CHO and its isomer, CHOH are discussed for the first time, employing density functional theory (DFT). The direct radical scavenging activity of caffeic acid against these radicals is verified hydrogen atom transfer (HAT) and radical adduct formation (RAF) mechanisms. HAT is predicted to be more feasible than RAF mechanism as per the computed data. Additionally, energetic details of the proposed oxidative degradation pathway of radical adduct intermediates toward the formation of a cyclic metabolite is analyzed. Kinetic studies indicated a significant tunneling contribution to the H abstraction pathways having high activation barriers. Further, our results imply that the newly formed metabolites exhibit comparable antioxidant activity with that of caffeic acid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10715762.2022.2161379 | DOI Listing |
Bioprocess Biosyst Eng
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.
View Article and Find Full Text PDFBMC Cancer
January 2025
Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan.
Background: Caffeic acid phenethyl ester (CAPE) is the main bioactive component of poplar type propolis. We previously reported that treatment with caffeic acid phenethyl ester (CAPE) suppressed the cell proliferation, tumor growth, as well as migration and invasion of prostate cancer (PCa) cells via inhibition of signaling pathways of AKT, c-Myc, Wnt and EGFR. We also demonstrated that combined treatment of CAPE and docetaxel altered the genes involved in glycolysis and tricarboxylic acid (TCA) cycle.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Technology, Hebei Agricultural University, Baoding, China. Electronic address:
In this study, steam explosion (SE) was applied to produce Xuehua pear soup (XPS) at different steam explosion pressure. The results showed that 0.3-0.
View Article and Find Full Text PDFChem Biodivers
January 2025
univ oeb, snv, ali menjli, 25000, constantine, ALGERIA.
This study investigates the pharmaceutical potential both in vitro and in silico of ethanolic propolis extract from three Algerian regions namely TAH (Tahir-Jijel), ATH (Oued Athmania-Mila) and OZ (Oued Zhor-skikda). Twenty-three compounds were identified via HPLC‒DAD, with key constituents including caffeic acid, cynarin, chrysin, naringin, and hesperetin. Moreover, Antioxidant and anti-Alzheimer activities were assessed by multiple assays.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
This study aims to identify the main chemical compounds, investigate the effects of different drying methods on the quality, and determine the appropriate drying method of Callicarpae Nudiflorae Folium. UPLC-UV-Q-TOF-MS was employed to characterize and identify 35 main compounds, including phenylethanoid glycosides, flavonoids, and iridoids in Callicarpae Nudiflorae Folium. A method for the simultaneous determination of 8 compounds with strong UV absorption and high content was established to evaluate the quality of Callicarpae Nudiflorae Folium dried by different methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!