ABCA9, an ER cholesterol transporter, inhibits breast cancer cell proliferation via SREBP-2 signaling.

Cancer Sci

Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.

Published: April 2023

The association between cholesterol metabolism and cancer development and progression has been recently highlighted. However, the role and function of many cholesterol transporters remain largely unknown. Here, we focused on the ATP-binding cassette subfamily A member 9 (ABCA9) transporter given that its expression is significantly downregulated in both canine mammary tumors and human breast cancers, which in breast cancer patients correlates with poor prognosis. We found that ABCA9 is mainly present in the endoplasmic reticulum (ER) and is responsible for promoting cholesterol accumulation in this structure. Accordingly, ABCA9 inhibited sterol-regulatory element binding protein-2 (SREBP-2) translocation from the ER to the nucleus, a crucial step for cholesterol synthesis, resulting in the downregulation of cholesterol synthesis gene expression. ABCA9 expression in breast cancer cells attenuated cell proliferation and reduced their colony-forming abilities. We identified ABCA9 expression to be regulated by Forkhead box O1 (FOXO1). Inhibition of PI3K induced enhanced ABCA9 expression through the activation of the PI3K-Akt-FOXO1 pathway in breast cancer cells. Altogether, our study suggests that ABCA9 functions as an ER cholesterol transporter that suppresses cholesterol synthesis via the inhibition of SREBP-2 signaling and that its restoration halts breast cancer cell proliferation. Our findings provide novel insight into the vital role of ABCA9 in breast cancer progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067411PMC
http://dx.doi.org/10.1111/cas.15710DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
cell proliferation
12
cholesterol synthesis
12
abca9 expression
12
abca9
9
cholesterol transporter
8
cancer cell
8
srebp-2 signaling
8
cancer cells
8
breast
7

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!