Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The accumulation of reactive oxygen species (ROS) generated by UV radiation can lead to lipid, protein, nucleic acid, and organelle damage, one of the core mechanisms mediating skin aging. In the photoaging process, how ROS drives the imbalance of the body's complex repair system to induce senescence-like features is not fully understood.
Methods: We irradiated human epidermal keratinocytes with 12 J/cm of UVA to establish an in vitro photoaging model. Then we employed whole-transcriptome sequencing and O2K mitochondrial function assay to reveal the photoprotective mechanisms of liquiritigenin (LQ).
Discussion: We found that skin reduces endogenous ROS by promoting mitochondrial oxidative phosphorylation uncoupling in response to UVA-induced damage. However, this also causes excessive consumption and idling of nutrients, leading to the inhibition of cell proliferation, and ultimately accelerating the skin aging process. Here, we demonstrated that LQ can reduce stress in keratinocytes, increase oxidative phosphorylation and ATP production efficiency, and block the massive loss of skin nutrients and net energy stress. Furthermore, LQ can promote collagen synthesis and keratinocyte proliferation through the PI3K-AKT pathway, thereby reversing photoaging.
Conclusion: This work provides a new skin aging mechanism and solution strategy with high clinical translation value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jocd.15506 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!