Background: Laterality in relation to behavior and sensory systems is found commonly in a variety of animal taxa. Despite the advantages conferred by laterality (e.g., the startle response and complex motor activities), little is known about the evolution of laterality and its plasticity in response to ecological demands. In the present study, a comparative study model, the Mexican tetra (Astyanax mexicanus), composed of two morphotypes, i.e., riverine surface fish and cave-dwelling cavefish, was used to address the relationship between environment and laterality.

Results: The use of a machine learning-based fish posture detection system and sensory ablation revealed that the left cranial lateral line significantly supports one type of foraging behavior, i.e., vibration attraction behavior, in one cave population. Additionally, left-right asymmetric approaches toward a vibrating rod became symmetrical after fasting in one cave population but not in the other populations.

Conclusion: Based on these findings, we propose a model explaining how the observed sensory laterality and behavioral shift could help adaptation in terms of the tradeoff in energy gain and loss during foraging according to differences in food availability among caves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795734PMC
http://dx.doi.org/10.1186/s12915-022-01501-1DOI Listing

Publication Analysis

Top Keywords

foraging behavior
8
cave population
8
evolution left-right
4
left-right asymmetry
4
sensory
4
asymmetry sensory
4
sensory system
4
system foraging
4
behavior
4
behavior adaptation
4

Similar Publications

Marine heatwaves (MHWs) caused by multiple phenomena with days to months duration are increasingly common disturbances in ocean ecosystems. We investigated the impacts of MHWs on pelagic communities using spatially resolved time-series of multiple trophic levels from the Southern California Current Ecosystem. Indices of phytoplankton biomass mostly declined during MHWs because of reduced nutrient supply (excepting Prochlorococcus) and were generally more sensitive to marine heatwave intensity than duration.

View Article and Find Full Text PDF

Genetic, natal and spatial drivers of social phenotypes in wild great tits.

J Anim Ecol

December 2024

Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK.

In social animals, group dynamics profoundly influence collective behaviours, vital in processes like information sharing and predator vigilance. Disentangling the causes of individual-level variation in social behaviours is crucial for understanding the evolution of sociality. This requires the estimation of the genetic and environmental basis of these behaviours, which is challenging in uncontrolled wild populations.

View Article and Find Full Text PDF

Patterns of phytochemistry localisation in plant tissues are diverse within and across leaves. These spatial heterogeneities are important to the fitness of herbivores, but their effects on herbivore foraging and dietary experience remain elusive. We manipulated the spatial variance and clusteredness of a plant toxin in a synthetic diet landscape on which individual caterpillars fed.

View Article and Find Full Text PDF

Effects of Nosema ceranae and Lotmaria passim infections on honey bee foraging behaviour and physiology.

Int J Parasitol

December 2024

Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, Alberta, Canada T0H 0C0. Electronic address:

Nosema ceranae and Lotmaria passim are two commonly encountered digestive tract parasites of the adult honey bee (Apis mellifera L.). Although these parasites are associated with colony losses, little is known about how they affect individual bee physiology and behaviour at the colony level.

View Article and Find Full Text PDF

Potentially Toxic Elements (PTEs) in Seabirds foraging across a heterogeneous landscape: cross-species bioaccumulation patterns.

Environ Pollut

December 2024

São Paulo State University (Unesp), Environmental Studies Center (CEA), Rio Claro, SP, Brazil; Postgraduate Program in Geosciences and Environment, Institute of Geosciences and Exact Sciences (IGCE), Rio Claro, SP, Brazil. Electronic address:

Seabirds are particularly susceptible to potentially toxic elements (PTEs) due to the tendency of biomagnification of some elements, thus serving as potential bioindicators for assessing environmental health. In this study, we analyzed As, Cd, Cu and Zn concentrations in liver samples from nine seabird species (51 specimens) collected along the Southwestern Atlantic Ocean. Results revealed substantial variations in PTE concentrations among species, with taxonomic orders influencing accumulation patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!