Third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), including osimertinib, an irreversible EGFR-TKI, are important treatments for non-small cell lung cancer with EGFR-TKI sensitizing or EGFR T790M resistance mutations. While patients treated with osimertinib show clinical benefit, disease progression and drug resistance are common. Emergence of de novo acquired resistance from a drug tolerant persister (DTP) cell population is one mechanism proposed to explain progression on osimertinib and other targeted cancer therapies. Here we profiled osimertinib DTPs using RNA-seq and ATAC-seq to characterize the features of these cells and performed drug screens to identify therapeutic vulnerabilities. We identified several vulnerabilities in osimertinib DTPs that were common across models, including sensitivity to MEK, AURKB, BRD4, and TEAD inhibition. We linked several of these vulnerabilities to gene regulatory changes, for example, TEAD vulnerability was consistent with evidence of Hippo pathway turning off in osimertinib DTPs. Last, we used genetic approaches using siRNA knockdown or CRISPR knockout to validate AURKB, BRD4, and TEAD as the direct targets responsible for the vulnerabilities observed in the drug screen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794691 | PMC |
http://dx.doi.org/10.1038/s41698-022-00337-w | DOI Listing |
Cancer Res
April 2024
Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania.
Residual cancer cells persist even after targeted therapies, serving as a reservoir for the subsequent acquisition of genetic alterations that lead to acquired drug resistance and tumor relapse. These initial drug-tolerant persisters (DTP) are phenotypically heterogenous with transient phenotypes attributed to epigenetic, metabolic, and cell-cycle changes. DTPs are responsible for the inevitable relapse seen in EGFR-mutant non-small cell lung cancer (NSCLC) despite high initial response to tyrosine kinase inhibitor (TKI) treatment.
View Article and Find Full Text PDFbioRxiv
November 2024
Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center.
APOBEC mutagenesis is one of the most common endogenous sources of mutations in human cancer and is a major source of genetic intratumor heterogeneity. High levels of APOBEC mutagenesis are associated with poor prognosis and aggressive disease across diverse cancers, but the mechanistic and functional impacts of APOBEC mutagenesis on tumor evolution and therapy resistance remain relatively unexplored. To address this, we investigated the contribution of APOBEC mutagenesis to acquired therapy resistance in a model of EGFR-mutant non-small cell lung cancer.
View Article and Find Full Text PDFCancer Res Commun
October 2022
AstraZeneca Oncology R&D, Cambridge, United Kingdom.
Unlabelled: Osimertinib is an EGFR tyrosine kinase inhibitor (TKI) with proven clinical efficacy; however, acquired resistance presents an obstacle to curing -driven disease. Recent studies have shown that drug-tolerant persister cells (DTP) have a distinct transcriptional profile that may confer specific vulnerabilities. By definition these cells avoid apoptosis, yet little is known about how their survival is regulated.
View Article and Find Full Text PDFNPJ Precis Oncol
December 2022
Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK.
Third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), including osimertinib, an irreversible EGFR-TKI, are important treatments for non-small cell lung cancer with EGFR-TKI sensitizing or EGFR T790M resistance mutations. While patients treated with osimertinib show clinical benefit, disease progression and drug resistance are common. Emergence of de novo acquired resistance from a drug tolerant persister (DTP) cell population is one mechanism proposed to explain progression on osimertinib and other targeted cancer therapies.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2023
Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. Electronic address:
Tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs), such as osimertinib, show great success in non-small-cell lung cancer patients with EGFR mutated tumors. However, almost all patients develop resistance to EGFR-TKIs owing to secondary EGFR mutations. Although genetic and irreversible resistance mechanisms have been proposed, little is known about non-genetic and reversible resistance mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!