Present and future: Infectious tropical travel rashes and the impact of climate change.

Ann Allergy Asthma Immunol

Seacoast Dermatology, PLLC, Portsmouth, New Hampshire; Department of Dermatology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; Department of Dermatology, University of Connecticut School of Medicine, Framingham, Connecticut. Electronic address:

Published: April 2023

AI Article Synopsis

  • The article reviews various skin conditions and diseases that travelers may encounter after visiting tropical areas, focusing on infections like cutaneous leishmaniasis and Chagas disease.
  • It provides clinicians with key details on how to diagnose, treat, and prevent these tropical skin issues, along with the effects of climate change on their spread.
  • Additionally, the piece highlights the increasing geographic range of diseases like Lyme and seabather's eruption due to warmer climates, emphasizing the importance of updated knowledge for healthcare providers.

Article Abstract

In this article, we discuss pertinent cutaneous findings with which patients may present after travel to tropical destinations. We address arthropod-borne infectious diseases such as cutaneous leishmaniasis, Chagas disease, cutaneous larva migrans, and myiasis. We discuss other relevant diseases with cutaneous signs such as monkey pox and severe acute respiratory syndrome coronavirus 2. We provide clinicians with information regarding the background, diagnosis, treatment, and prevention of these tropical rashes. In addition, we address the impact that climate change will have on the temporal and geographic incidence of these rashes. Viral, fungal, and vector-borne diseases have seen a geographic expansion into more northern latitudes. Among these are tick-borne Lyme disease, aquatic snail-related seabather's eruption, and atopic dermatitis. As these diseases spread, we believe that the updated information within this article is significant to the practicing physician in today's warming world.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789609PMC
http://dx.doi.org/10.1016/j.anai.2022.12.025DOI Listing

Publication Analysis

Top Keywords

impact climate
8
climate change
8
diseases cutaneous
8
future infectious
4
infectious tropical
4
tropical travel
4
travel rashes
4
rashes impact
4
change article
4
article discuss
4

Similar Publications

Frontline Clinic Administrator Perspectives on Extreme Weather Events, Clinic Operations, and Climate Resilience.

J Ambul Care Manage

January 2025

Author Affiliations: Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts (Drs Wiskel and Dresser); Harvard T.H. Chan School of Public Health Center for Climate, Health, and the Global Environment, Boston, Massachusetts (Drs Wiskel and Dresser); Americares, Stamford, Connecticut (Mr Matthews-Trigg, Ms Stevens, and Dr Miles); and Harvard Medical School, Boston, Massachusetts (Drs Wiskel, Dresser, and Bernstein).

Climate-sensitive extreme weather events are increasingly impacting frontline clinic operations. We conducted a national, cross-sectional survey of 284 self-identified administrators and other staff at frontline clinics determining their attitudes toward climate change and the impacts, resilience, and preparedness of clinics for extreme weather events. Most respondents (80.

View Article and Find Full Text PDF

Injecting CO into deep geological formations can be an effective carbon removal and storage technology to mitigate global climate change. Interaction of injected CO with rock formations changes pH and hydrochemistry within the deep injection zone (> 800 m depth). However, cap rocks and multiple tight aquitards typically act as barriers to protect the shallow aquifer from changes in the injection zone.

View Article and Find Full Text PDF

Impact of a lagoon with high anthropic activity on a World Heritage Site.

Environ Monit Assess

January 2025

Department of Earth Science, University of Bizerte-FSB, University of Carthage, 7120, Bizerte, Tunisia.

The Ichkeul-Bizerte Lagoon Complex (IBLC), a critical ecosystem for local biodiversity, faces a pressing threat due to climate change and severe pollution. Despite past conservation efforts, pollution persists, particularly in the Bizerte Lagoon. This study investigated the impact of water dynamics and climatic conditions on heavy metal contamination in the IBLC's sediments.

View Article and Find Full Text PDF

Arctic ecosystems are affected by accelerated warming as well as the intensification of the hydrologic cycle, yet understanding of the impacts of compound climate extremes (e.g., simultaneous extreme heat and rainfall) remains limited, despite their high potential to alter ecosystems.

View Article and Find Full Text PDF

The Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice-covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (Erignathus barbatus), including two subspecies (E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!