Machine learning for surrogate process models of bioproduction pathways.

Bioresour Technol

Life-cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA; Energy & Biosciences Institute, University of California, Berkeley, 282 Koshland Hall, Berkeley, CA 94720, USA. Electronic address:

Published: February 2023

Technoeconomic analysis and life-cycle assessment are critical to guiding and prioritizing bench-scale experiments and to evaluating economic and environmental performance of biofuel or biochemical production processes at scale. Traditionally, commercial process simulation tools have been used to develop detailed models for these purposes. However, developing and running such models can be costly and computationally intensive, which limits the degree to which they can be shared and reproduced in the broader research community. This study evaluates the potential of an automated machine learning approach to develop surrogate models based on conventional process simulation models. The analysis focuses on several high-value biofuels and bioproducts for which pathways of production from biomass feedstocks have been well-established. The results demonstrate that surrogate models can be an accurate and effective tool for approximating the cost, mass and energy balance outputs of more complex process simulations at a fraction of the computational expense.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.128528DOI Listing

Publication Analysis

Top Keywords

machine learning
8
process simulation
8
surrogate models
8
models
6
learning surrogate
4
process
4
surrogate process
4
process models
4
models bioproduction
4
bioproduction pathways
4

Similar Publications

Objectives: The lack of definitive biomarkers presents a significant challenge for chemo-immunotherapy in extensive-stage small-cell lung cancer (ES-SCLC). We aimed to identify key genes associated with chemo-immunotherapy efficacy in ES-SCLC through comprehensive gene expression analysis using machine learning (ML).

Methods: A prospective multicenter cohort of patients with ES-SCLC who received first-line chemo-immunotherapy was analyzed.

View Article and Find Full Text PDF

Purpose: Recent advances in artificial intelligence provide opportunities to capture and represent complex features of human language in a more automated manner, offering potential means of improving the efficiency of language assessment. This review article presents computerized approaches for the analysis of narrative language and identification of language disorders in children.

Method: We first describe the current barriers to clinicians' use of language sample analysis, narrative language sampling approaches, and the data processing stages that precede analysis.

View Article and Find Full Text PDF

Background: With the use of machine learning algorithms, artificial intelligence (AI) has become a viable diagnostic and treatment tool for oral cancer. AI can assess a variety of information, including histopathology slides and intraoral pictures.

Aim: The purpose of this systematic review is to evaluate the efficacy and accuracy of AI technology in the detection and diagnosis of oral cancer between 2020 and 2024.

View Article and Find Full Text PDF

Introduction: The prevalence of neurodegenerative diseases has significantly increased, necessitating a deeper understanding of their symptoms, diagnostic processes, and prevention strategies. Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are two prominent neurodegenerative conditions that present diagnostic challenges due to overlapping symptoms. To address these challenges, experts utilize a range of imaging techniques, including magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT).

View Article and Find Full Text PDF

Predicting Discharge Destination from Inpatient Rehabilitation Using Machine Learning.

Am J Phys Med Rehabil

December 2024

Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226.

Predicting discharge destination for patients at inpatient rehabilitation facilities is important as it facilitates transitions of care and can improve healthcare resource utilization. This study aims to build on previous studies investigating discharges from inpatient rehabilitation by employing machine learning models to predict discharge disposition to home versus non-home and explore related factors. Fifteen machine learning models were tested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!