Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
After Fundão Dam failure in 2015, most of Gualaxo do Norte River in Doce River Basin in Brazil became silted by iron mining tailings consisting mainly of fine-grained quartz, hematite, and goethite. Previous work pointed to the possibility of reductive dissolution of iron and manganese from tailings, leading to mobilization of iron, manganese and trace elements. Several microorganisms were shown to reduce Fe(III) to Fe(II) and Mn(III, IV) to Mn(II) "in vitro", but their roles in mobilization of Fe and trace elements from freshwater sediments are poorly understood. In this work, bottom sediments and water collected in Gualaxo do Norte River were used to build anoxic microcosms amended with acetate, glucose or yeast extract, in order to access if heterotrophic microorganisms, either fermenters or dissimilatory Fe reducers, could reduce Fe(III) from minerals in the sediments to soluble Fe(II), releasing trace elements. The Fe(II) concentrations were measured over time, and trace elements concentrations were evaluated at the end of the experiment. In addition, minerals and biopolymers in bottom sediments were quantified. Results showed that organic substrates, notably glucose, fuelled microbial reduction of iron minerals and release of Fe(II), Mn, Ba, Al and/or Zn from sediments. In general, higher concentrations of organic substrates elicited mobilization of larger amounts of Fe(II) and trace elements from sediments. The results point to the possibility of mobilization of huge amounts of iron and trace elements from sediments to water if excess biodegradable organic matter is released in rivers affected by iron mine tailings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2022.115143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!