Dramatic Reduction of Pain and Rapid Reepithelialization in an Acute Burn Wound Treated With Fractional CO 2 Laser After 11 Days of Injury.

Dermatol Surg

Salud Galicia, Dermatología y laserterapia, Rúa Benito Blanco Rajoy nº 9, 1ºB, 15006, A Coruña, Spain.

Published: February 2023

Download full-text PDF

Source
http://dx.doi.org/10.1097/DSS.0000000000003685DOI Listing

Publication Analysis

Top Keywords

dramatic reduction
4
reduction pain
4
pain rapid
4
rapid reepithelialization
4
reepithelialization acute
4
acute burn
4
burn wound
4
wound treated
4
treated fractional
4
fractional laser
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Wollongong, Wollongong, NSW, Australia.

Background: Brain iron dyshomeostasis has been observed in behavioral deficits relevant to neurodegenerative diseases such as Alzheimer's disease (AD), but it remains unclear whether it is a primary cause or an epiphenomenon of disease.

Method: We assessed the effects of brain iron dyshomeostasis on spatial cognition and cognitive flexibility using the IntelliCage system, recognition memory using novel object recognition tasks and anxiety-like behavior using the open field and elevated plus maze tests. We investigated these phenotypes in a HfexTfr2 mouse model of brain iron dyshomeostasis alone (Iron) or combined with an APP/PS1 model of Alzheimer's Aβ amyloidosis (Aβ+Iron), compared with APP/PS1 mice with Aβ amyloidosis alone (Aβ) or wildtype controls.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified genetic polymorphisms of ABI3 as a risk factor for late-onset Alzheimer's Disease (LOAD), but the role of ABI3 in microglia is not well understood.
  • Using CRISPR/Cas9, a specific risk variant (S212F) was introduced into mouse models to study its effects on AD-related pathologies alongside 5xFAD mice over time.
  • Results showed that the 5xFAD/Abi3 mice exhibited a decrease in amyloid beta plaque burden and a significant reduction in microglia numbers with age, suggesting ABI3 may influence both plaque formation and microglial response in AD pathology.
View Article and Find Full Text PDF

Hydrological dynamics of the Yangtze river-Dongting lake system after the construction of the three Gorges dam.

Sci Rep

January 2025

School of Ocean Engineering and Technology/Institute of Estuarine and Coastal Research, Sun Yat-sen University, Guangzhou, 510275, China.

The Yangtze River-Dongting Lake link has gotten a lot of attention as a because of the Three Gorges Project. However, the hydrological dynamic process and future direction of the river-lake interaction in the context of sediment reduction are yet unknown. Based on Dongting Lake Basin runoff and sediment data from 1961 to 2020, as well as field monitoring data of turbidity and flow velocity from Yichang to Chenglingji section of the Yangtze River, this paper examines the runoff and sediment variation law and hydrological dynamic process of Chenglingji, the only outlet connecting Dongting Lake to the Yangtze River, and reveals the development trend of the river-lake relationship.

View Article and Find Full Text PDF

Improved silicon solar cells by tuning angular response to solar trajectory.

Nat Commun

January 2025

School of Photovoltaic and Renewable Energy Engineering (SPREE), University of New South Wales, Sydney, 2052, Australia.

Silicon solar cell costs are reducing dramatically with these cells now providing the majority of new electricity generation capacity worldwide. Cost reduction has been via economies of scale and steadily increasing sunlight energy conversion efficiency. The best experimental cells at 27.

View Article and Find Full Text PDF

Accurate DFT simulation of complex functional materials: Synergistic enhancements achieved by SCAN meta-GGA.

J Chem Phys

January 2025

Minjiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China.

Complex functional materials are characterized by intricate and competing bond orders, making them an excellent platform for evaluating the newly developed strongly constrained and appropriately normed (SCAN) density functional. In this study, we explore the effectiveness of SCAN in simulating the electronic properties of displacive ferroelectrics (BaTiO3 and PbTiO3) and magnetoelectric multiferroics (BiFeO3 and YMnO3), which encompass a broad spectrum of bonding characteristics. Due to a significant reduction in self-interaction error, SCAN manifests its improvements over the Perdew-Burke-Ernzerhof (PBE) method in three aspects: SCAN predicts more accurate ionicity, produces more compact orbitals, and better captures d-orbital anisotropy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!