Deubiquitinase ubiquitin-specific protease 3 (USP3) inhibits HIV-1 replication via promoting APOBEC3G (A3G) expression in both enzyme activity-dependent and -independent manners.

Chin Med J (Engl)

Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, China.

Published: November 2022

Background: Ubiquitination plays an essential role in many biological processes, including viral infection, and can be reversed by deubiquitinating enzymes (DUBs). Although some studies discovered that DUBs inhibit or enhance viral infection by various mechanisms, there is lack of information on the role of DUBs in virus regulation, which needs to be further investigated.

Methods: Immunoblotting, real-time polymerase chain reaction, in vivo / in vitro deubiquitination, protein immunoprecipitation, immunofluorescence, and co-localization biological techniques were employed to examine the effect of ubiquitin-specific protease 3 (USP3) on APOBEC3G (A3G) stability and human immunodeficiency virus (HIV) replication. To analyse the relationship between USP3 and HIV disease progression, we recruited 20 HIV-infected patients to detect the levels of USP3 and A3G in peripheral blood and analysed their correlation with CD4 + T-cell counts. Correlation was estimated by Pearson correlation coefficients (for parametric data).

Results: The results demonstrated that USP3 specifically inhibits HIV-1 replication in an A3G-dependent manner. Further investigation found that USP3 stabilized 90% to 95% of A3G expression by deubiquitinating Vif-mediated polyubiquitination and blocking its degradation in an enzyme-dependent manner. It also enhances the A3G messenger RNA (mRNA) level by binding to A3G mRNA and stabilizing it in an enzyme-independent manner. Moreover, USP3 expression was positively correlated with A3G expression ( r  = 0.5110) and CD4 + T-cell counts ( r  = 0.5083) in HIV-1-infected patients.

Conclusions: USP3 restricts HIV-1 viral infections by increasing the expression of the antiviral factor A3G. Therefore, USP3 may be an important target for drug development and serve as a novel therapeutic strategy against viral infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945250PMC
http://dx.doi.org/10.1097/CM9.0000000000002478DOI Listing

Publication Analysis

Top Keywords

a3g expression
12
usp3
9
ubiquitin-specific protease
8
protease usp3
8
usp3 inhibits
8
inhibits hiv-1
8
hiv-1 replication
8
a3g
8
apobec3g a3g
8
viral infection
8

Similar Publications

Unlabelled: APOBEC3 proteins (A3s) play an important role in host innate immunity against viruses and DNA mutations in cancer. A3s-induced mutations in both viral and human DNA genomes vary significantly from non-lethal mutations in viruses to localized hypermutations, such as kataegis in cancer. How A3s are regulated remains largely unknown.

View Article and Find Full Text PDF

The human cellular cytidine deaminases APOBEC3s (A3s) inhibit virion infectivity factor (Vif)-deficient HIV-1 replication. However, virus-encoded Vifs abolish this defense system by specifically recruiting A3s to an E3 ubiquitin ligase complex to induce their degradation. The highly conserved Vif PPLP motif is critical for the Vif-mediated antagonism of A3s and is believed to be important for Vif multimerization.

View Article and Find Full Text PDF

Potential Role of APOBEC3 Family Proteins in SARS-CoV-2 Replication.

Viruses

July 2024

Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has acquired multiple mutations since its emergence. Analyses of the SARS-CoV-2 genomes from infected patients exhibit a bias toward C-to-U mutations, which are suggested to be caused by the apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) cytosine deaminase proteins. However, the role of A3 enzymes in SARS-CoV-2 replication remains unclear.

View Article and Find Full Text PDF

SARS-CoV-2 evolves gradually to cause COVID-19 epidemic. One of driving forces of SARS-CoV-2 evolution might be activation of apolipoprotein B mRNA editing catalytic subunit-like protein 3 (APOBEC3) by inflammatory factors. Here, we aimed to elucidate the effect of the APOBEC3-related viral mutations on the infectivity and immune evasion of SARS-CoV-2.

View Article and Find Full Text PDF

The Disassociation of A3G-Related HIV-1 cDNA G-to-A Hypermutation to Viral Infectivity.

Viruses

May 2024

Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA.

APOBEC3G (A3G) restricts HIV-1 replication primarily by reducing viral cDNA and inducing G-to-A hypermutations in viral cDNA. HIV-1 encodes virion infectivity factor (Vif) to counteract A3G primarily by excluding A3G viral encapsidation. Even though the Vif-induced exclusion is robust, studies suggest that A3G is still detectable in the virion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!