Fusarium kalimantanense is a genetic lineage of Fusarium oxysporum f. sp. cubense (Foc) and belongs to the Fusarium oxysporum species complex (FOSC). This pathogen is a causative agent of Panama disease, an infection that has caused damage to the banana crop worldwide. Bacillus sp. (LPPC170) showed preliminary antagonist activity against F. kalimantanense (LPPC130) in vitro tests from the cultivation of axenic culture and co-culture with inhibition of mycelial growth of phytopathogen of 41.23%. According to these findings, volatile organic compounds (VOCs) emitted from Bacillus sp. were obtained by solid-phase microextraction and identified by gas chromatography coupled with a mass spectrometer (GC-MS). The multivariate data analysis tool (PLS-DA and Heatmap) identified short-chain organic acids as the main antagonistic VOCs responsible for inhibiting the mycelial growth of LPPC130. Acetic acid, propanoic acid, butanoic acid, valeric acid, and isovaleric acid exhibited a strong inhibitory effect on the mycelial growth of LPPC130, with inhibition of 20.68%, 33.30%, 26.87%, 43.71%, and 53.10%, respectively. Scanning electron microscopy revealed that VOCs caused damage to the vegetative and reproductive structures of the fungus. These results suggest Bacillus LPPC170 as an excellent biocontrol tool against the phytopathogen causative agents of Panama disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-022-03509-9DOI Listing

Publication Analysis

Top Keywords

mycelial growth
12
volatile organic
8
organic compounds
8
fusarium kalimantanense
8
fusarium oxysporum
8
panama disease
8
caused damage
8
bacillus lppc170
8
growth lppc130
8
acid
5

Similar Publications

Functional Characterization of , a Gene Coding an Aspartic Acid Protease in .

J Fungi (Basel)

December 2024

Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China.

Aspartic proteases (APs), hydrolases with aspartic acid residues as catalytic active sites, are closely associated with processes such as plant growth and development and fungal and bacterial pathogenesis. is the dominant pathogenic fungus that causes Fusarium head blight (FHB) in wheat. However, the relationship of APs to the growth, development, and pathogenesis of .

View Article and Find Full Text PDF

Effect of a Mating Type Gene Editing in Using RNP/Nanoparticle Complex.

J Fungi (Basel)

December 2024

Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea.

Gene editing using CRISPR/Cas9 is an innovative tool for developing new mushroom strains, offering a promising alternative to traditional breeding methods that are time-consuming and labor-intensive. However, plasmid-based gene editing presents several challenges, including the need for selecting appropriate promoters for Cas9 expression, optimizing codons for the Cas9 gene, the unintended insertion of fragmented plasmid DNA into genomic DNA (gDNA), and regulatory concerns related to genetically modified organisms (GMOs). To address these issues, we utilized a Ribonucleoprotein (RNP) complex consisting of Cas9 and gRNA for gene editing to modify the A mating-type gene of .

View Article and Find Full Text PDF

Sisal () bole rot caused by is the main phytosanitary problem affecting sisal in the Brazilian semi-arid region. The aim of this study was to evaluate spp. as biocontrol agents for sisal bole rot.

View Article and Find Full Text PDF

To determine the compatibility of two new biocontrol fungi with common chemical pesticides, this study examined the effects of three insecticides, namely, avermectin, imidacloprid, and acetamiprid, and three fungicides, namely, chlorogenonil, boscalid, and kasugamycin, on the mycelial growth and spore germination of strains IF-1106 and IJ-tg19. The insecticidal effects of mixed insecticides or fungicides with good compatibility with IJ-tg19 against were tested. The results showed that the six chemical pesticides exerted different degrees of inhibition on the mycelial growth of both strains, with an obvious dose-dependent effect.

View Article and Find Full Text PDF

This study examined the efficacy and mechanisms of action of the antimicrobial peptide BP15 and its lipopeptides, HBP15 and LBP15, against , the primary causative agent of green mold in citrus fruits. The findings revealed that all three antimicrobial peptides markedly inhibited the spore germination and mycelial growth of , with minimum inhibitory concentrations (MICs) of 3.12 μM for BP15, HBP15, and LBP15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!