Human enterokinase light chain (hEKL) cDNA sequence was designed with the help of codon optimization towards Escherichia coli codon preference and ribosome binding site design and artificially synthesized with a thioredoxin fusion tag at the N-terminal and a five his-tag peptide at the C-terminal. The synthetic hEKL gene was cloned into the pET-15 expression vector and transferred into the three different expression strains of E. coli BL21(DE3), NiCo21, and SHuffle T7 Express. Different growth and induction conditions were studied using a statistical response surface methodology (RSM). Recombinant hEKL protein was expressed at high levels in soluble form with 0.71 mM IPTG after 4 h of induction at 25 °C. Autocatalytic process cleaved TRX tag with enterokinase recognition site by the impure hEKL and yielded the mature enzyme. The target protein was then purified to homogeneity (> 95%) by affinity chromatography. The activity of hEKL was comparable to the commercial enzyme. From 1 L culture, 80 mg pure active hEKL was obtained with the specific activity of 6.25 × 10 U/mg. Three main parameters that help us to produce the enzyme in the folded and active form are the type of strain, SHuffle T7 strain, TRX and histidine fusion tags, and growth conditions including the increase of OD of induction and IPTG concentration and the decrease of induction temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794667PMC
http://dx.doi.org/10.1186/s13568-022-01504-9DOI Listing

Publication Analysis

Top Keywords

human enterokinase
8
enterokinase light
8
light chain
8
hekl
6
simple efficient
4
efficient method
4
method cytoplasmic
4
cytoplasmic production
4
production human
4
chain coli
4

Similar Publications

Many strategies have been developed to produce high levels of biologically active recombinant proteins in plants for biopharmaceutical purposes. However, the production of an active form of human iduronate-2-sulfatase (hIDS) for the treatment of Hunter syndrome by enzyme replacement therapy (ERT) is challenging due to the requirement for cotranslational modification by a formylglycine-producing enzyme encoded by sulfatase modifying factor 1 (hSUMF1) at the Cys84 residue, which converts it to C(alpha)-formylglycine. In this study, we have shown that hIDS can be highly expressed in N.

View Article and Find Full Text PDF

Coagulation factor XIa (FXIa) is associated with a low risk of bleeding and has been identified as an effective and safe target for the development of novel anticoagulant drugs. In this study, we established an ultrasensitive competitive dual-enzyme cascade signal amplification method for the quantitative analysis and screening of FXIa inhibitors. Due to the specific recognition of FXIa's active site by the aptamer AptE40, the AptE40-QDs-EK recognition probe modified with enterokinase (EK) and the aptamer AptE40, was attached to the MNPs-FXIa capture probe.

View Article and Find Full Text PDF

Molecular basis of proteolytic cleavage regulation by the extracellular matrix receptor dystroglycan.

Structure

November 2024

Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA. Electronic address:

Article Synopsis
  • The dystrophin-glycoprotein-complex (DGC), which connects the cell's internal structure to its external environment, is crucial for muscle function, and its disruption is linked to diseases like muscular dystrophy.
  • Recent research focused on understanding how matrix-metalloproteinases (MMPs) can cleave dystroglycan, a key protein in the DGC, and how this might contribute to such diseases.
  • By analyzing the structure of dystroglycan, scientists discovered how its unique C-terminal extension regulates MMP cleavage, which could help clarify mechanisms behind DGC disruption in muscular dystrophy.
View Article and Find Full Text PDF

This study aimed to investigate the probiogenomic features of artisanal bacteriocin-producing BGPAS1-3 and the use of the improved pMALc5HisEk expression vector for overexpressing class II bacteriocins and the application of purified bacteriocin 31 in a milk model as a preservative against . The BGPAS1-3 strain was isolated from traditional fresh soft cheese manufactured in households on a small scale in rural locations surrounding Pale Mountain City in Bosnia and Herzegovina. The whole-genome sequencing approach and bioinformatics analyses revealed that the strain BGPAS1-3 was non-pathogenic to humans.

View Article and Find Full Text PDF

In-silico functional analyses identify TMPRSS15-mediated intestinal absorption of lithium as a modulator of lithium response in bipolar disorder.

J Affect Disord

August 2024

Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia; University of South Australia Clinical and Health Sciences, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.

Background: The therapeutic response to lithium in patients with bipolar disorder is highly variable and has a polygenic basis. Genome-wide association studies investigating lithium response have identified several relevant loci, though the precise mechanisms driving these associations are poorly understood. We aimed to prioritise the most likely effector gene and determine the mechanisms underlying an intergenic lithium response locus on chromosome 21 identified by the International Consortium on Lithium Genetics (ConLiGen).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!