Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Existing biomarkers for diagnosing and predicting metastasis of lung adenocarcinoma (LUAD) may not meet the demands of clinical practice. Risk prediction models with multiple markers may provide better prognostic factors for accurate diagnosis and prediction of metastatic LUAD.
Methods: An animal model of LUAD metastasis was constructed using CRISPR technology, and genes related to LUAD metastasis were screened by mRNA sequencing of normal and metastatic tissues. The immune characteristics of different subtypes were analyzed, and differentially expressed genes were subjected to survival and Cox regression analyses to identify the specific genes involved in metastasis for constructing a prediction model. The biological function of RFLNA was verified by analyzing CCK-8, migration, invasion, and apoptosis in LUAD cell lines.
Results: We identified 108 differentially expressed genes related to metastasis and classified LUAD samples into two subtypes according to gene expression. Subsequently, a prediction model composed of eight metastasis-related genes (RHOBTB2, KIAA1524, CENPW, DEPDC1, RFLNA, COL7A1, MMP12, and HOXB9) was constructed. The areas under the curves of the logistic regression and neural network were 0.946 and 0.856, respectively. The model effectively classified patients into low- and high-risk groups. The low-risk group had a better prognosis in both the training and test cohorts, indicating that the prediction model had good diagnostic and predictive power. Upregulation of RFLNA successfully promoted cell proliferation, migration, invasion, and attenuated apoptosis, suggesting that RFLNA plays a role in promoting LUAD development and metastasis.
Conclusion: The model has important diagnostic and prognostic value for metastatic LUAD and may be useful in clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00432-022-04495-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!