Nitrosoarenes Implement Cascade Cyclization of 1-Allenyl-2-alkynylbenzenes through Diradical Mechanism.

Org Lett

Frontier Research Center on Fundamental and Applied Science of Matter, Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, Republic of China.

Published: January 2023

This work reports cascade cyclization between 1-allenyl-2-alkynylbenzenes and nitrosoarenes. When these two components reacted alone under N, N,O-functionalized indane-fused isoxazolidines were obtained selectively. DFT calculations verify that this reaction sequence involves unprecedented nitrone/alkyne cycloadditions, followed by diradical rearrangement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.2c03884DOI Listing

Publication Analysis

Top Keywords

cascade cyclization
8
cyclization 1-allenyl-2-alkynylbenzenes
8
nitrosoarenes implement
4
implement cascade
4
1-allenyl-2-alkynylbenzenes diradical
4
diradical mechanism
4
mechanism work
4
work reports
4
reports cascade
4
1-allenyl-2-alkynylbenzenes nitrosoarenes
4

Similar Publications

We have developed a glycosyl radical-based synthesis of -alkyl glycosides through a deoxygenative Giese addition-reduction-cyclization cascade, in which readily available 1-hydroxy carbohydrates serve as precursors for glycosyl radicals and aryl alkenes function as radical acceptors. This reaction not only provides an effective method for accessing a previously underexplored class of functionalized cyclopropanes but also enhances the application of Giese addition in the synthesis of -alkyl glycosides by derivatizing the radical intermediate generated through polar cyclization to yield a cyclopropane.

View Article and Find Full Text PDF

In light of the extensive applications of sulfur-containing heterocyclic compounds in drug discovery, agrochemicals, and advanced materials, the construction of complex sulfur-containing molecular scaffolds has flourished in recent years. There is a profound interest in synthetic methods for forming carbon-sulfur bonds. Regarding this, transition metal (TM)-catalyzed C-H bond activation has emerged as a valuable means for the rapid formation of C-S bonds, although it is comparatively less explored than C-N or C-C bonds.

View Article and Find Full Text PDF

Complexity-generating reactions that access three-dimensional products from simple starting materials offer substantial value for drug discovery. While oxygen-containing heterocycles frequently feature unique, nonaromatic architectures such as spirocyclic rings, exploration of these chemical spaces is limited by conventional synthetic approaches. Herein, we report a copper-catalyzed annulation and alkene transposition cascade reaction that enables a modular preparation of complex, spirocyclic ethers from readily available alkenol substrates via a copper-catalyzed annulation and transannular 1,5-hydrogen atom transfer-mediated C-H functionalization.

View Article and Find Full Text PDF

Electrochemical Oxidative Cascade Cyclization of Alkenyl Alcohols with External Nucleophiles to Access Amino- and Hydroxy-Functionalized -Heterocycles.

J Org Chem

December 2024

Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China.

A convenient electrochemical oxidative cascade cyclization of alkenes equipped with pendant alcohols with general nucleophiles was developed. Using readily available diarylmethanimine and carboxylic acids as nucleophilic sources, a broad range of internal alkene and terminal alkene substrates could produce RCO- and ArCN-functionalized -heterocycles in moderate to high yields without the requirement for external oxidants and metals. These resulting products can subsequently be hydrolyzed to yield valuable NH- and OH-functionalized tetrahydrofurans and tetrahydropyranes under mild conditions.

View Article and Find Full Text PDF

The development of polymers from renewable resources is a promising approach to reduce reliance on petrochemicals. In addition, depolymerization is attracting significant attention for the breakdown of polymers at their end-of-life or to achieve specific stimuli-responsive functions. However, the design of polymers incorporating both of these features remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!