Effects of glyphosate exposure on the miRNA expression profile and construction of the miRNA-mRNA regulatory network in mouse bone marrow cells.

Funct Integr Genomics

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China.

Published: December 2022

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10142-022-00939-4DOI Listing

Publication Analysis

Top Keywords

effects glyphosate
4
glyphosate exposure
4
exposure mirna
4
mirna expression
4
expression profile
4
profile construction
4
construction mirna-mrna
4
mirna-mrna regulatory
4
regulatory network
4
network mouse
4

Similar Publications

Green Glyphosate Treatment with Ferrihydrite and CaO via Forming Surface Ternary Complex.

Environ Sci Technol

January 2025

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

Glyphosate (PMG) is a globally used broad-spectrum herbicide and receives environmental concerns because of its moderate persistence and potential carcinogenicity. Traditional PMG treatment methods often suffer from the generation of a more toxic and persistent aminomethylphosphonic acid (AMPA) intermediate. Herein, we develop a green method with ferrihydrite (FH) and CaO (FH/CaO) via regulating the coordination of PMG with FH and Ca, where the phosphonate group of PMG preferentially binds to FH and its carboxylate side complexes with Ca released by CaO, forming a FH-PMG-Ca ternary surface complex.

View Article and Find Full Text PDF

A novel Cu-coordinated fluorescent sensing system for specific detection of glyphosate and its applications in environmental and biological systems.

J Hazard Mater

January 2025

Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA. Electronic address:

Glyphosate is a non-selective herbicide widely used in agriculture, and its overexposure poses significant health and environmental risks. Herein, a novel Cu-coordinated fluorescent sensing system (HYBC-Cu system) based on acylhydrazone groups was designed, capable of glyphosate-specific recognition. The HYBC-Cu system was constructed with simple steps, with the advantages of short recognition time (< 1 min), good specificity, anti-interference, and excellent sensitivity (LOD = 95 nM).

View Article and Find Full Text PDF

The scope of this study was to assess the ototoxic effects and general health of farmers exposed to pesticides in the Pontal do Paranapanema region, SP, Brazil. Participants of both sexes aged 18-40, 40-60 and >60 years were allocated into two groups: Non-Exposed Group (NEG) and Occupationally Exposed Group (OEG). A questionnaire of exposure and health, meatoscopy, pure tone audiometry, logoaudiometry and immittanciometry were assessed.

View Article and Find Full Text PDF

Background: Glyphosate is an extensively employed herbicide in agriculture, specifically for sugarcane cultivation. The situation is different with the extensive physiological and genetic effects exerted by this herbicide on a range of plant species, including sugarcane, whose model basis is still poorly characterized, although its primary mode of action, which acts on the EPSPS enzyme in the shikimic acid pathway, is completely elucidated. The current study was aimed at investigating the stability of glyphosate formulation, molecular interactions of glyphosate formulation with rbcL enzyme associated with chlorophyll metabolism, and its effects on varieties of sugarcane.

View Article and Find Full Text PDF

Glyphosate, a widely used herbicide globally, has prompted concerns regarding its potential health impacts. This study aimed to explore the link between glyphosate exposure and renal function by combining NHANES, a zebrafish model, and metabolomics. A cross-sectional analysis of 2013-2014 NHANES data investigated the relationship between glyphosate exposure and renal function [albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR)].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!