Sequential multiple assignments randomized trials (SMARTs) are a type of experimental design where patients may be randomised multiple times according to pre-specified decision rules. The present work investigates the state-of-the-art of SMART designs in oncology, focusing on the discrepancy between the available methodological approaches in the statistical literature and the procedures applied within cancer clinical trials. A systematic review was conducted, searching PubMed, Embase and CENTRAL for protocols or reports of results of SMART designs and registrations of SMART designs in clinical trial registries applied to solid tumour research. After title/abstract and full-text screening, 33 records were included. Fifteen were reports of trials' results, four were trials' protocols and fourteen were trials' registrations. The study design was defined as SMART by only one out of fifteen trial reports. Conversely, 13 of 18 study protocols and trial registrations defined the study design SMART. Furthermore, most of the records considered each stage separately in the analysis, without considering treatment regimens embedded in the trial. SMART designs in oncology are still limited. Study powering and analysis is mainly based on statistical approaches traditionally used in single-stage parallel trial designs. Formal reporting guidelines for SMART designs are needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792155 | PMC |
http://dx.doi.org/10.1038/s41416-022-02110-z | DOI Listing |
PLoS One
January 2025
Engineering Research Center of Hydrogen Energy Equipment& Safety Detection, Universities of Shaanxi Province, Xijing University, Xi'an, China.
The traditional method of corn quality detection relies heavily on the subjective judgment of inspectors and suffers from a high error rate. To address these issues, this study employs the Swin Transformer as an enhanced base model, integrating machine vision and deep learning techniques for corn quality assessment. Initially, images of high-quality, moldy, and broken corn were collected.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.
Manganese ions (Mn) are an immune activator that enhances the activation of both cGAS and STING proteins. The STING signaling activation and subsequential immune responses are predominantly associated with endoplasmic reticulum (ER). Therefore, ER targeting of Mn in the subcellular compartments would promote the activation of STING signaling pathways.
View Article and Find Full Text PDFStat Med
February 2025
Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY.
Clinical trials are often designed based on limited information about effect sizes and precision parameters with risks of underpowered studies. This is more problematic for SMARTs where strategy effects are based on sequences of treatments. Sample size adjustment offers flexibility through re-estimating sample size during the trial to ensure adequate power at the final analysis.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
Despite its widespread application in targeted drug delivery, soft robotics, and smart screens, magnetic hydrogel still faces challenges from lagging mechanical performance to sluggish response times. In this paper, a methodology of in situ generation of magnetic hydrogel based on 3D printing of poly-N-isopropylacrylamide (PNIPAM) is presented. A temperature-responsive PNIPAM hydrogel was prepared by 3D printing, and FeO magnetic particles were generated in situ within the PNIPAM network to generate the magnetic hydrogel.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland.
This study focuses on the development and evaluation of the OrthoNail hybrid intramedullary implant for lower limb lengthening in patients requiring significant skeletal reconstruction. The implant addresses the challenges in load-bearing during rehabilitation, providing a robust solution that is capable of supporting physiological loads. Mechanical tests, including axial compression, tension, torsion, and 3,4-point bending, determined the implant's load capacity and fatigue resistance, while finite element analysis assessed stress distributions in bone tissue and around screw holes during single-leg stance, with boundary conditions derived from Orthoload database data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!