A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Python library to check the level of anonymity of a dataset. | LitMetric

A Python library to check the level of anonymity of a dataset.

Sci Data

Instituto de Física de Cantabria (IFCA), CSIC-UC, Avda. los Castros s/n, 39005, Santander, Spain.

Published: December 2022

Openly sharing data with sensitive attributes and privacy restrictions is a challenging task. In this document we present the implementation of pyCANON, a Python library and command line interface (CLI) to check and assess the level of anonymity of a dataset through some of the most common anonymization techniques: k-anonymity, (α,k)-anonymity, ℓ-diversity, entropy ℓ-diversity, recursive (c,ℓ)-diversity, t-closeness, basic β-likeness, enhanced β-likeness and δ-disclosure privacy. For the case of more than one sensitive attribute, two approaches are proposed for evaluating these techniques. The main strength of this library is to obtain a full report of the parameters that are fulfilled for each of the techniques mentioned above, with the unique requirement of the set of quasi-identifiers and sensitive attributes. The methods implemented are presented together with the attacks they prevent, the description of the library, examples of the different functions' usage, as well as the impact and the possible applications that can be developed. Finally, some possible aspects to be incorporated in future updates are proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9791635PMC
http://dx.doi.org/10.1038/s41597-022-01894-2DOI Listing

Publication Analysis

Top Keywords

python library
8
level anonymity
8
anonymity dataset
8
sensitive attributes
8
library check
4
check level
4
dataset openly
4
openly sharing
4
sharing data
4
data sensitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!