Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The global increase in drought frequency and intensity in large areas has potentially important effects on soil seed banks (SSBs). However, a systematic evaluation of the impact of drought on SSBs at a global scale has not yet been well understood. We evaluated the effects of drought on SSBs and identified the association key drivers in the current meta-analysis. The overall effects of drought on soil seed density and richness were weak negative and positive, respectively. Drought significantly increased soil seed density by 11.94 % in forest ecosystem, whereas soil seed richness were significantly increased in vascular plants (7.39 %). Linear mixed-effect results showed that soil seed density and richness significantly reduced as increasing drought intensity. In addition, geography (altitude) has significance in controlling the lnRR of soil seed density by altering climate (mean annual precipitation, drought) and soil properties (pH, soil organic carbon, and clay content) in the structural equation model, whereas soil seed richness was controlled by geography (altitude, and latitude) via climate (mean annual precipitation). In summary, the results suggested the size of SSBs response to drought and its relationship with drought intensity in terrestrial ecosystems, it may shed light on ecosystem restoration, succession, and management using SSBs when estimating the future drought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.161142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!