Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polyinosinic-polycytidylic acid (PIC) provides a model of developmental neuropathy by inducing maternal immune activation. We investigated the effects of an antioxidant, alpha-glycosyl isoquercitrin (AGIQ), on PIC-induced developmental neuropathy in rats, focusing on postnatal hippocampal neurogenesis. On gestational day 15, PIC at 4 mg/kg body weight was administered to dams intravenously. AGIQ either at 0.25% or 0.5% was administered through the diet to dams from gestational day 10 until weaning on day 21 post-delivery and, thereafter, to offspring until postnatal day 77 (adult stage). At weaning, the numbers of TBR2 cells and PCNA cells in the subgranular zone and reelin cells in the dentate gyrus hilus in offspring of dams treated with PIC only were decreased compared with untreated controls. In contrast, 0.5% AGIQ ameliorated these changes and increased the transcript levels of genes related to signaling of reelin (Reln and Vldlr), growth factors (Bdnf, Cntf, Igf1, and Igf1r), and Wnt/β-catenin (Wnt5a, Lrp6, Fzd1, and Fzd3). In adults, AGIQ increased the number of FOS granule cells at 0.25% and the transcript levels of NMDA-type glutamate receptor genes, Grin2a and Grin2b, at 0.25% and 0.5%, respectively. These results suggest that mid-gestation PIC treatment decreased the abundance of type-2b neural progenitor cells (NPCs) by reducing NPC proliferation in relation with suppression of reelin signaling at weaning. We suggest that AGIQ ameliorated the PIC-induced suppressed neurogenesis by enhancing reelin, growth factor, and Wnt/β-catenin signaling at weaning to rescue NPC proliferation and increased synaptic plasticity by enhancing glutamatergic signaling via NMDA-type receptors after maturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchemneu.2022.102219 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!