Currently, there is a lack of treatments for retinal neurotrauma. To address this issue, this study uses an alpha7 nAChR agonist, PNU-282987, to determine it effects on functional activity in the retina shortly after a traumatic blast exposure. The objectives of this research include: (1) examination of the cellular and functional damage associated with ocular blast exposure, and (2) evaluation of structural and functional changes that occur post PNU-282987 treatment. Significant ocular blast damage was induced in adult mice after exposure to a single blast of 35 psi to the left eye. Blast-exposed transgenic mice expressing tdTomato Müller glia were treated daily with eyedrops containing PNU-282987 for 4 weeks following the blast exposure. Antibody staining studies in these transgenic mice was conducted to examine lineage tracing and electroretinograms (ERGs) were obtained to examine functional changes. Blast exposure caused a significant loss of cells in all retinal layers after 4 weeks. Immunohistochemical analysis demonstrated tdTomato-positive labeled photoreceptors and retinal ganglion cells in blast-exposed mice treated with PNU-282987. ERG recordings were taken from control animals, from blast-damaged animals and from animals exposed to blast followed by 4 weeks of PNU-282987 treatment. Scotopic ERG recordings from blast-exposed mice had significantly decreased amplitudes of a-wave, b-wave, oscillatory potentials and flicker frequencies, which were prevented after PNU-282987 treatment. In photopic experiments, the PhNR response was reduced significantly after blast exposure but the decrease was prevented after treatment with PNU-282987. These are the first experiments that demonstrate preservation of retinal function after blast exposure using an alpha7 nAChR agonist.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2022.12.017 | DOI Listing |
Exp Neurol
January 2025
Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India. Electronic address:
Head trauma from blast exposure is a growing health concern, particularly among active military personnel, and is considered the signature injury of the Gulf War. However, it remains elusive whether fundamental differences exist between blast-related traumatic brain injuries (TBI) and TBI due to other mechanisms. Considering the importance of lipid metabolism associated with neuronal membrane integrity and its compromise during TBI, we sought to find changes in lipidomic profiling during blast or blunt (Stereotaxically Controlled Contusison-SCC)-mediated TBI.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers ( = 18) with extensive blast exposure against unexposed military controls ( = 19).
View Article and Find Full Text PDFLife (Basel)
December 2024
Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, IUT, 55 Rue Saint Germain, 27000 Evreux, France.
The presence of bile acids in the cystic fibrosis patient's lungs contributes to an increase in the inflammatory response, in the dominance of pathogens, as well as in the decline in lung function, increasing morbidity. The aim of this study is to determine the effects of exposure of to primary and secondary bile acids on the production of several virulence factors which are involved in its pathogenic power. The presence of bile acids in the bacterial culture medium had no effect on growth up to a concentration of 1 mM.
View Article and Find Full Text PDFNeurotrauma Rep
December 2024
Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Neurotrauma Rep
December 2024
Truman VA Hospital Research Service, Columbia, Missouri, USA.
Primary blast exposure is a predominant cause of mild traumatic brain injury (mTBI) among veterans and active-duty military personnel, and affected individuals may develop long-lasting behavioral disturbances that interfere with quality of life. Our prior research with the "Missouri Blast" model demonstrated behavioral changes relevant to deficits in cognitive and affective domains after exposure to low-intensity blast (LIB). In this study, behavioral evaluations were extended to 3 months post-LIB injury using multifaceted conventional and advanced behavioral paradigms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!