The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G') and loss (G") moduli and the G' recovery capacity of the hydrogels (from 70.05 ± 3.06 % (90:10) to 82.63 ± 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness and stress from 114.02 ± 10.93 Pa (90:10) to 337.16 ± 34.03 Pa (60:40) and from 18.27 ± 1.32 kPa (90:10) to 47.17 ± 3.59 kPa (60:40), respectively. The hydrogels were non-cytotoxic against human keratinocyte cells (HaCaT), with cell viabilities above 70 % for up to 72 h. The hydrogel 60:40 was loaded with HaCaT cells (3 × 10 cells mL) and bioprinted. The cell viability was maintained elevated until day 7 (90 ± 3 %) after bioprinting. These results highlight that the combination of these two biopolymers was a good strategy for the development of novel hydrogel-based bioinks for extrusion 3D bioprinting applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.12.227 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!