Aggregated α-synuclein, a major constituent of Lewy bodies plays a crucial role in the pathogenesis of α-synucleinopathies (SPs) such as Parkinson's disease (PD). PD is affected by the innate and adaptive arms of the immune system, and recently both active and passive immunotherapies targeted against α-synuclein are being trialed as potential novel treatment strategies. Specifically, dendritic cell-based vaccines have shown to be an effective treatment for SPs in animal models. Here, we report on the development of adoptive cellular therapy (ACT) for SP and demonstrate that adoptive transfer of pre-activated T-cells generated from immunized mice can improve survival and behavior, reduce brain microstructural impairment via magnetic resonance imaging (MRI), and decrease α-synuclein pathology burden in a peripherally induced preclinical SP model (M83) when administered prior to disease onset. This study provides preclinical evidence for ACT as a potential immunotherapy for LBD, PD and other related SPs, and future work will provide necessary understanding of the mechanisms of its action.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9853504 | PMC |
http://dx.doi.org/10.1021/acschemneuro.2c00539 | DOI Listing |
Immunol Rev
December 2024
Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.
View Article and Find Full Text PDFThe risk of severe outcomes of influenza increases during pregnancy. Whether vaccine-induced T cell memory-primed prepregnancy retains the ability to mediate protection during pregnancy, when systemic levels of several hormones with putative immunomodulatory functions are increased, is unknown. Here, using murine adoptive transfer systems and a translationally relevant model of cold-adapted live-attenuated influenza A virus vaccination, we show that preexisting virus-specific memory T cell responses are largely unaltered and highly protective against heterotypic viral challenges during pregnancy.
View Article and Find Full Text PDFTheranostics
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
T cell receptor-engineered T (TCR-T) cell therapies are at the forefront of cancer immunotherapy, offering a transformative approach that significantly enhances the ability of T cells to recognize and eliminate cancer cells. This innovative method involves genetically modifying TCRs to increase their affinity for tumor-specific antigens. While these enhancements improve the ability of T cells to recognize and bind to antigens on cancer cells, rigorous assessment of specificity remains crucial to ensure safety and targeted responses.
View Article and Find Full Text PDFTrends Endocrinol Metab
December 2024
Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy. Electronic address:
Lipids are metabolic messengers essential for energy production, membrane structure, and signal transduction. Beyond their recognized role, lipids have emerged as metabolic rheostats of T cell responses, with distinct species differentially modulating CD8+ T cell (CTL) fate and function. Indeed, lipids can influence T cell signaling by altering their membrane composition; in addition, they can affect the differentiation path of T cells through cellular metabolism.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.
Objective: To investigate the correlation of the clinical characteristics, fever characteristics, serum biomarkers with cytokine release syndrome (CRS) in patients with relapsed/refractory multiple myeloma (R/R MM) treated with chimeric antigen receptor T cell (CAR-T) immunotherapy.
Methods: 104 R/R MM patients who received CAR-T cell therapy at the Affiliated Hospital of Xuzhou Medical University from June 2017 to November 2021 were included, and the correlations of their clinical characteristics, fever characteristics, serum biomarkers with the severity of CRS were analyzed.
Results: Among 104 R/R MM patients receiving CAR-T treatment, no CRS was observed in 8 cases (7.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!