Premise: The consequences of acidity for plant performance are profound, yet the prevalence and causes of low pH in bromeliad tank water are unknown despite its functional relevance to key members of many neotropical plant communities.

Methods: We investigated tank water pH for eight bromeliad species in the field and for the widely occurring Guzmania monostachia in varying light. We compared pH changes over time between plant and artificial tanks containing a solution combined from several plants. Aquaporin transcripts were measured for field plants at two levels of pH. We investigated relationships between pH, leaf hydraulic conductance, and CO concentration in greenhouse plants and tested proton pump activity using a stimulator and inhibitor.

Results: Mean tank water pH for the eight species was 4.7 ± 0.06 and was lower for G. monostachia in higher light. The pH of the solution in artificial tanks, unlike in plants, did not decrease over time. Aquaporin transcription was higher for plants with lower pH, but leaf hydraulic conductance did not differ, suggesting that the pH did not influence water uptake. Tank pH and CO concentration were inversely related. Fusicoccin enhanced a decrease in tank pH, whereas orthovanadate did not.

Conclusions: Guzmania monostachia acidified its tank water via leaf proton pumps, which appeared responsive to light. Low pH increased aquaporin transcripts but did not influence leaf hydraulic conductance, hence may be more relevant to nutrient uptake.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107723PMC
http://dx.doi.org/10.1002/ajb2.16104DOI Listing

Publication Analysis

Top Keywords

tank water
16
leaf hydraulic
12
hydraulic conductance
12
guzmania monostachia
8
artificial tanks
8
aquaporin transcripts
8
tank
7
water
5
plants
5
acid waters
4

Similar Publications

Advanced KNN-based cost-efficient algorithm for precision localization and energy optimization in dynamic underwater sensor networks.

Sci Rep

January 2025

Department of Natural and Engineering Sciences, College of Applied Studies and Community Services, King Saud University, Riyadh, 11543, Saudi Arabia.

Underwater environmental exploration using sensor nodes has emerged as a critical endeavor fraught with challenges such as localization errors, energy, and costs attributed to the dynamic nature of underwater environments. This paper proposes a KNN-based cost-efficient machine-learning algorithm aimed at optimizing underwater context acquisition with sensor nodes. By addressing existing localization challenges, the algorithm minimizes localization errors, energy consumption and Time costs while significantly enhancing localization accuracy to 99.

View Article and Find Full Text PDF

Water Heater Type, Temperature Setting, Operational Conditions, and Insulation Affect Ecological Niches for Growth.

ACS ES T Water

January 2025

Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

Residential water heating represents an important nexus of energy/water conservation, waterborne disease, hygiene, and consumer preference. Here, we examine attributes of two off-the-shelf 151-L tank water heaters, one with hot water recirculation (recirculating) and another without recirculation (standard), compared to a tankless on-demand heater (on-demand). Energy efficiency decreased in the order on-demand > standard > continuous recirculation.

View Article and Find Full Text PDF

CFD simulation of turbulent mass transfer of HS and O in a stirring tank.

Water Sci Technol

January 2025

Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin 13355, Germany.

This study explores the computational fluid dynamics (CFD) simulation of oxygen (O) and hydrogen sulfide (HS) mass transfer in a highly turbulent stirring tank. Using the open-source software OpenFOAM, we extended three-dimensional two-phase flow solvers with a rotating mesh feature to model the mass transfer processes between the water and air phases. The accuracy of these simulations was validated against experimental data, demonstrating a strong agreement in the mass transfer rates of HS and O.

View Article and Find Full Text PDF

To measure the electroacoustic parameters of transducers in the continuous sound field in a limited water area, a reciprocity calibration method of hydrophones using a spatial sampling average method in a non-anechoic tank was developed. The sound propagation in the non-anechoic tank under the impedance boundary condition, with a sound source producing continuous sound, is introduced based on the Helmholtz equation and Green's function. The reciprocity constant is given using the spatial sampling average sound pressure, and the three-transducer reciprocity calibration procedure was established.

View Article and Find Full Text PDF

Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!