As the average age of the world population increases, more people will face debilitating aging-associated conditions, including dementia and stroke. Not only does the incidence of these conditions increase with age, but the recovery afterward is often worse in older patients. Researchers and health professionals must unveil and understand the factors behind age-associated diseases to develop a therapy for older patients. Aging causes profound changes in the immune system including the activation of microglia in the brain. Activated microglia promote T lymphocyte transmigration leading to an increase in neuroinflammation, white matter damage, and cognitive impairment in both older humans and rodents. The presence of T and B lymphocytes is observed in the aged brain and correlates with worse stroke outcomes. Preclinical strategies in stroke target either microglia or the lymphocytes or the communications between them to promote functional recovery in aged subjects. In this review, we examine the role of the microglia and T and B lymphocytes in aging and how they contribute to cognitive impairment. Additionally, we provide an important update on the contribution of these cells and their interactions in preclinical aged stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10075112PMC
http://dx.doi.org/10.4103/1673-5374.360345DOI Listing

Publication Analysis

Top Keywords

microglia lymphocytes
12
lymphocytes aging
8
older patients
8
cognitive impairment
8
microglia
5
stroke
5
bystanders not?
4
not? microglia
4
lymphocytes
4
aging stroke
4

Similar Publications

Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant.

View Article and Find Full Text PDF

Objective: Therapeutic translation is challenging in spinal cord injury (SCI) and large animal models with high clinical relevance may accelerate therapeutic development. Pigs have important anatomical and physiological similarities to humans. Intraspinal inflammation mediates SCI pathophysiology.

View Article and Find Full Text PDF

Spatiotemporal profile of an optimal host response to virus infection in the primate central nervous system.

PLoS Pathog

January 2025

Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, United States of America.

Viral infections of the central nervous system (CNS) are a major cause of morbidity largely due to lack of prevention and inadequate treatments. While mortality from viral CNS infections is significant, nearly two thirds of the patients survive. Thus, it is important to understand how the human CNS can successfully control virus infection and recover.

View Article and Find Full Text PDF

HIV-associated neurocognitive disorders (HAND) and viral reservoirs in the brain remain a significant challenge. Despite their importance, the mechanisms allowing HIV-1 entry and replication in the central nervous system (CNS) are poorly understood. Here, we show that α-synuclein and (to a lesser extent) Aβ fibrils associated with neurological diseases enhance HIV-1 entry and replication in human T cells, macrophages, and microglia.

View Article and Find Full Text PDF

Dimethyl fumarate (DMF) is an anti-inflammatory and immunoregulatory medication used to treat multiple sclerosis (MS) and psoriasis. Its skin sensitization property precludes its topical use, which is unfortunate for the treatment of psoriasis. Isosorbide di-(methyl fumarate) (IDMF), a novel derivative of DMF, was synthesized to circumvent this adverse reaction and unlock the potential of topical delivery, which could be useful for treating psoriasis in the subpopulation of psoriatic MS patients, as well as in the general population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!