Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Musical training has long been viewed as a model for experience-dependent brain plasticity. Reports of musical training-induced brain plasticity are largely based on cross-sectional studies comparing musicians to non-musicians, which cannot address whether musical training itself is sufficient to induce these neurobiological changes or whether pre-existing neuroarchitecture before training predisposes children to succeed in music. Here, in a longitudinal investigation of children from infancy to school age (n = 25), we find brain structure in infancy that predicts subsequent music aptitude skills at school-age. Building on prior evidence implicating white matter organization of the corticospinal tract as a neural predisposition for musical training in adults, here we find that structural organization of the right corticospinal tract in infancy is associated with school-age tonal and rhythmic musical aptitude skills. Moreover, within the corpus callosum, an inter-hemispheric white matter pathway traditionally linked with musical training, we find that structural organization of this pathway in infancy is associated with subsequent tonal music aptitude. Our findings suggest predispositions prior to the onset of musical training from as early as infancy may serve as a scaffold upon which ongoing musical experience can build. RESEARCH HIGHLIGHTS: Structural organization of the right corticospinal tract in infancy is associated with school-age musical aptitude skills. Longitudinal associations between the right corticospinal tract in infancy and school-age rhythmic music aptitude skills remain significant even when controlling for language ability. Findings support the notion of predispositions for success in music, and suggest that musical predispositions likely build upon a neural structural scaffold established in infancy. Findings support the working hypothesis that a dynamic interaction between predisposition and experience established in infancy shape the trajectory of long-term musical development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291011 | PMC |
http://dx.doi.org/10.1111/desc.13365 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!