Some conventional sanitizers and antibiotics used in food industry may be of concerns due to generation of toxic byproducts, impact on the environment, and the emergence of antibiotic resistance bacteria. Bio-based antimicrobials can be an alternative to conventional sanitizers since they are produced from renewable resources, and the bacterial resistance to these compounds is of less concern than those of currently used antibiotics. Among the bio-based antimicrobial compounds, those produced either fermentation or chemical synthesis by covalently or electrovalently attaching specific moieties to the fatty acid have drawn attention in recent years. Disaccharide, arginine, vitamin B1, and phenolics are linked to fatty acids resulting in the production of sophorolipid, lauric arginate ethyl ester, thiamin dilauryl sulfate, and phenolic branched-chain fatty acid, respectively, all of which are reported to exhibit antimicrobial activity by targeting the cell membrane of the bacteria. Also, studies that applied these compounds as food preservatives by combining them with other compounds or treatments have been reviewed regarding extending the shelf life and inactivating foodborne pathogens of foods and food products. In addition, the phenolic branched-chain fatty acids, which are relatively new compounds compared to the others, are highlighted in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2022.2160430 | DOI Listing |
Alzheimers Dement
December 2024
University of Georgia, College of Pharmacy, Athens, GA, USA.
Background: Lipids are key modulators in the pathogenesis of Alzheimer's disease (AD). Dysregulation of lipid homeostasis may disrupt the blood brain barrier, alter myelination, disturb cellular signaling and cause abnormal processing of the amyloid precursor protein. The purpose of this scoping review was to evaluate fatty acid supplementation in patients with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Virginia, Charlottesville, VA, USA.
Background: Spousal care partners to people with dementia (PWD) have a higher rate of depression and anxiety when compared to similar age controls. Previous studies have suggested a role of gut microbiota in the pathophysiology of neuropsychiatric symptoms and Alzheimer's disease (AD). Thus, our study aims to: (1) determine the presence and severity of depression and anxiety in care partners of PWD, and (2) determine the concentrations of short chain fatty acids (SCFA), which are mainly produced by gut microbiota and are important in mediating gut microbiota effects, in the blood of care partners of PWD.
View Article and Find Full Text PDFArch Physiol Biochem
January 2025
Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Dysregulated energy metabolism, particularly lipid metabolism disorders, has been identified as a key factor in the development of diabetic cardiomyopathy (DCM). Sirtuin 2 (SIRT2) is a deacetylase involved in the regulation of metabolism and cellular energy homeostasis, yet its role in the progression of DCM remains unclear. We observed significantly reduced SIRT2 expression in DCM model mice.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
PIEZO1 has been found to play a vital role in regulating intestinal epithelial cells (IEC) function and maintaining intestinal barrier in recent years. Therefore, IEC PIEZO1 might exert a significant impact on liver metabolism through the gut-liver axis, but there is no research on this topic currently. Classic high-fat diet (HFD) model and mice with IEC-specific deficiency of PIEZO1 ( ) were used to explore the problem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!