As a key component of terrestrial ecosystems, soil interacts directly with aboveground vegetation. Evaluating soil quality is therefore of great significance to comprehensively explore the interaction mechanism of this association. The purpose of this study was to fully understand the characteristics of aboveground vegetation, soil quality, and their potential coupling relationship among different forest types in Hunan Province, and to provide a theoretical basis for further exploring the mechanisms underlying soil-vegetation interactions in central China. We have set up sample plots of five kinds of forests (namely broad-leaved forest, coniferous forest, coniferous broad-leaved mixed forest, bamboo forest, and shrub forest) in Hunan Province. To explore the differences of vegetation characteristics and soil physical and chemical properties among the five stand types, variance analysis, principal component analysis, and regression analysis were used. Finally, we explored the coupling relationship between soil quality and aboveground vegetation characteristics of each forest. We found that there were significant differences in soil quality among the forest types, ranked as follows: shrub forest > bamboo forest > broad-leaved forest > mixed coniferous and broad-leaved forest > coniferous forest. In general, there was a negative correlation between vegetation richness and soil quality in the broad-leaved forest and the shrub forest, but they showed a positive correlation in the coniferous forest, the mixed coniferous and broad-leaved forest, and the bamboo forest. As a necessary habitat condition for aboveground vegetation, soil directly determines the survival and prosperity of plant species. These results indicated that for vegetation-soil dynamics in a strong competitive environment, as one aspect wanes the other waxes. However, in a weak competitive environment, the adverse relationship between vegetation and soil is less pronounced and their aspects can promote.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768340 | PMC |
http://dx.doi.org/10.3389/fpls.2022.1009109 | DOI Listing |
Chemosphere
March 2025
Center for Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia (CCAAB - UFRB), 710, rua Rui Barbosa, Centro - Cruz das Almas, Bahia, Brazil. Electronic address:
Mangroves are delicate ecosystems constantly pressured by urbanization, pollution, and climate change. Establishing natural geochemical backgrounds (GB) or geochemical baseline levels (GBL) for metals in these soils is challenging due to the dynamic coastal conditions and the combined influence of anthropogenic and natural geological factors. This study aims to establish the natural geochemical background of trace elements in mangrove soils, a more complex task than establishing GBL.
View Article and Find Full Text PDFEcotoxicol Environ Saf
March 2025
Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China. Electronic address:
Soil salinization has emerged as a major factor negatively affecting soil quality and plant productivity. Proline, functioning as an osmotic regulator, has been proposed as an effective strategy for enhancing plant tolerance to salt stress. This study aimed to investigate the effects of exogenous proline on salt tolerance in soybeans.
View Article and Find Full Text PDFPLoS One
March 2025
Department of Land, Air and Water Resources, University of California-Davis, Davis, California, United States of America.
Organic agriculture is expanding worldwide, driven by expectations of improving food quality and soil health. However, while organic certification by regulatory bodies such as the United States Department of Agriculture and the European Union confirms compliance with organic standards that prohibit synthetic chemical inputs, there is limited oversight to verify that organic practices, such as the use of authentic organic fertilizer sources, are consistently applied at the field level. This study investigated the elemental content of carbon (C) and nitrogen (N) and their stable isotopes (δ13C and δ15N) in seven different crops grown under organic or conventional practices to assess their applicability as a screening tool to verify the authenticity of organic labeled produce.
View Article and Find Full Text PDFCurr Microbiol
March 2025
College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
Tobacco bacterial wilt (TBW), caused by Ralstonia solanacearum, significantly impacts tobacco yield and quality, leading to substantial economic losses. This study investigated the effects of the microbial agents JX (Pichia sp. J1 and Klebsiella oxytoca ZS4) on the soil properties, rhizospheric microbial community, tobacco agronomic traits, and TBW incidence through field experiments.
View Article and Find Full Text PDFBMC Microbiol
March 2025
Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China.
The application of pesticides may have significant impacts on soil environment and communities. In order to understand the deep relationship between the application of chlormequat chloride (CC) and the bacterial community in peanut soil, high-resolution characterization was performed using peanut soil samples (12 points; 0-20 cm rhizosphere soil) from untreated and sprayed with different concentrations of CC. Experimental data showed that with the increase of concentration, operational taxonomic units (OTUs) richness showed a decreasing tendency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!