Since 2019, the coronavirus disease-19 (COVID-19) has been spreading rapidly worldwide, posing an unignorable threat to the global economy and human health. It is a disease caused by severe acute respiratory syndrome coronavirus 2, a single-stranded RNA virus of the genus Betacoronavirus. This virus is highly infectious and relies on its angiotensin-converting enzyme 2-receptor to enter cells. With the increase in the number of confirmed COVID-19 diagnoses, the difficulty of diagnosis due to the lack of global healthcare resources becomes increasingly apparent. Deep learning-based computer-aided diagnosis models with high generalisability can effectively alleviate this pressure. Hyperparameter tuning is essential in training such models and significantly impacts their final performance and training speed. However, traditional hyperparameter tuning methods are usually time-consuming and unstable. To solve this issue, we introduce Particle Swarm Optimisation to build a PSO-guided Self-Tuning Convolution Neural Network (PSTCNN), allowing the model to tune hyperparameters automatically. Therefore, the proposed approach can reduce human involvement. Also, the optimisation algorithm can select the combination of hyperparameters in a targeted manner, thus stably achieving a solution closer to the global optimum. Experimentally, the PSTCNN can obtain quite excellent results, with a sensitivity of 93.65%±1.86%, a specificity of 94.32%±2.07%, a precision of 94.30%±2.04%, an accuracy of 93.99%±1.78%, an F1-score of 93.97%±1.78%, Matthews Correlation Coefficient of 87.99%±3.56%, and Fowlkes-Mallows Index of 93.97%±1.78%. Our experiments demonstrate that compared to traditional methods, hyperparameter tuning of the model using an optimisation algorithm is faster and more effective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613982PMC
http://dx.doi.org/10.32604/biocell.2021.0xxxDOI Listing

Publication Analysis

Top Keywords

hyperparameter tuning
12
pso-guided self-tuning
8
optimisation algorithm
8
pstcnn explainable
4
explainable covid-19
4
covid-19 diagnosis
4
diagnosis pso-guided
4
self-tuning cnn
4
cnn 2019
4
2019 coronavirus
4

Similar Publications

Enhancement of security, personalization, and safety in advanced transportation systems depends on driver identification. In this context, this work suggests a new method to find drivers by means of a Random Forest model optimized using the osprey optimization algorithm (OOA) for feature selection and the salp swarm optimization (SSO) for hyperparameter tuning based on driving behavior. The proposed model achieves an accuracy of 92%, a precision of 91%, a recall of 93%, and an F1-score of 92%, significantly outperforming traditional machine learning models such as XGBoost, CatBoost, and Support Vector Machines.

View Article and Find Full Text PDF

Efficient optimisation of physical reservoir computers using only a delayed input.

Commun Eng

January 2025

Laboratoire d'Information Quantique CP224, Université libre de Bruxelles (ULB), Av. F. D. Roosevelt 50, 1050, Bruxelles, Belgium.

Reservoir computing is a machine learning algorithm for processing time dependent data which is well suited for experimental implementation. Tuning the hyperparameters of the reservoir is a time-consuming task that limits is applicability. Here we present an experimental validation of a recently proposed optimisation technique in which the reservoir receives both the input signal and a delayed version of the input signal.

View Article and Find Full Text PDF

ChatGPT-Assisted Machine Learning for Chronic Disease Classification and Prediction: A Developmental and Validation Study.

Cureus

December 2024

Department of Medicine, Medical Teaching Institution (MTI) Hayatabad Medical Complex, Peshawar, PAK.

Background Chronic diseases such as chronic kidney disease (CKD), chronic liver disease (CLD), tuberculosis (TB), dementia, and heart disease are global health concerns of significant importance, representing major causes of morbidity and mortality worldwide. Early diagnosis and interventions are critical to improve patient outcomes and reduce healthcare costs. Methods This prospective observational study analyzed clinical data from 270 patients (calculated using G*Power 3.

View Article and Find Full Text PDF

This study aimed to develop an advanced ensemble approach for automated classification of mental health disorders in social media posts. The research question was: can an ensemble of fine-tuned transformer models (XLNet, RoBERTa, and ELECTRA) with Bayesian hyperparameter optimization improve the accuracy of mental health disorder classification in social media text. Three transformer models (XLNet, RoBERTa, and ELECTRA) were fine-tuned on a dataset of social media posts labelled with 15 distinct mental health disorders.

View Article and Find Full Text PDF

3T dilated inception network for enhanced autism spectrum disorder diagnosis using resting-state fMRI data.

Cogn Neurodyn

December 2025

Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu India.

Autism spectrum disorder (ASD) is one of the complicated neurodevelopmental disorders that impacts the daily functioning and social interactions of individuals. It includes diverse symptoms and severity levels, making it challenging to diagnose and treat efficiently. Various deep learning (DL) based methods have been developed for diagnosing ASD, which rely heavily on behavioral assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!