How far is brain-inspired artificial intelligence away from brain?

Front Neurosci

Hefei National Research Center for Physical Sciences at the Microscale, and Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China.

Published: December 2022

Fueled by the development of neuroscience and artificial intelligence (AI), recent advances in the brain-inspired AI have manifested a tipping-point in the collaboration of the two fields. AI began with the inspiration of neuroscience, but has evolved to achieve a remarkable performance with little dependence upon neuroscience. However, in a recent collaboration, research into neurobiological explainability of AI models found that these highly accurate models may resemble the neurobiological representation of the same computational processes in the brain, although these models have been developed in the absence of such neuroscientific references. In this perspective, we review the cooperation and separation between neuroscience and AI, and emphasize on the current advance, that is, a new cooperation, the neurobiological explainability of AI. Under the intertwined development of the two fields, we propose a practical framework to evaluate the brain-likeness of AI models, paving the way for their further improvements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783913PMC
http://dx.doi.org/10.3389/fnins.2022.1096737DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
neurobiological explainability
8
brain-inspired artificial
4
intelligence brain?
4
brain? fueled
4
fueled development
4
neuroscience
4
development neuroscience
4
neuroscience artificial
4
intelligence advances
4

Similar Publications

Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.

View Article and Find Full Text PDF

Cranioventral pulmonary consolidation (CVPC) is a common lesion observed in the lungs of slaughtered pigs, often associated with Mycoplasma (M.) hyopneumoniae infection. There is a need to implement simple, fast, and valid CVPC scoring methods.

View Article and Find Full Text PDF

Objectives: This data note presents a comprehensive geodatabase of cardiovascular disease (CVD) hospitalizations in Mashhad, Iran, alongside key environmental factors such as air pollutants, built environment indicators, green spaces, and urban density. Using a spatiotemporal dataset of over 52,000 hospitalized CVD patients collected over five years, the study supports approaches like advanced spatiotemporal modeling, artificial intelligence, and machine learning to predict high-risk CVD areas and guide public health interventions.

Data Description: This dataset includes detailed epidemiologic and geospatial information on CVD hospitalizations in Mashhad, Iran, from January 1, 2016, to December 31, 2020.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a prevalent complication among critically ill patients, constituting around 10% of intensive care unit (ICU) admissions and mortality rates ranging from 35 to 46%. Hence, early recognition and prediction of ARDS are crucial for the timely administration of targeted treatment. However, ARDS is frequently underdiagnosed or delayed, and its heterogeneity diminishes the clinical utility of ARDS biomarkers.

View Article and Find Full Text PDF

Background: Artificial intelligence has gradually been used into various fields of medical education at present. Under the background of moxibustion robot teaching assistance, the study aims to explore the relationship and the internal mechanism between learning engagement and evaluation in three stages, preparation before class, participation in class, and consolidation after class.

Methods: Based on the data investigated in 250 youths in university via multistage cluster sampling following the self-administered questionnaire, structural equation model was built to discussing factors of study process about moxibustion robots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!