In this work, we report a 5-min magnetic particle spectroscopy (MPS)-based bioassay strategy. In our approach, surface-functionalized magnetic nanoparticles are incubated with target analytes at 37 °C with agitation for 3 min, and the MPS reading is then taken at the fifth minute. We prove the feasibility of 5 min ultrafast detection of SARS-CoV-2 spike protein with a detection limit below 5 nM (0.2 pmol). Our proposed 5-min bioassay strategy may be applied to reduce the assay time for other liquid-phase, volumetric biosensors such as NMR, quantum dots, fluorescent biosensors, etc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762417 | PMC |
http://dx.doi.org/10.1021/acsanm.2c05237 | DOI Listing |
Adv Mater
January 2025
Henry Royce Institute and Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
As human-machine interface hardware advances, better sensors are required to detect signals from different stimuli. Among numerous technologies, humidity sensors are critical for applications across different sectors, including environmental monitoring, food production, agriculture, and healthcare. Current humidity sensors rely on materials that absorb moisture, which can take some time to equilibrate with the surrounding environment, thus slowing their temporal response and limiting their applications.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
ECE Department, University of Wisconsin at Madison, 1415 Engineering Dr, Rm 3442, Madison, WI 53706, USA, Madison, Wisconsin, 53706, UNITED STATES.
Two-dimensional (2D) van der Waals materials are shaping the landscape of next-generation devices, offering significant technological value thanks to their unique, tunable, and layer-dependent electronic and optoelectronic properties. Time-domain spectroscopic techniques at terahertz (THz) frequencies offer noninvasive, contact-free methods for characterizing the dynamics of carriers in 2D materials. They also pave the path toward the applications of 2D materials in detection, imaging, manufacturing, and communication within the increasingly important THz frequency range.
View Article and Find Full Text PDFACS Sens
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
An effective long-term nitrogen dioxide (NO) monitoring at trace concentration is critical for protecting the ecological environment and public health. Tellurium (Te), as a recently discovered 2D elemental material, is promising for NO detection because of its suitable band structure for gas adsorption and charge mobility. However, the high activity of Te leads to poor stability in ambient and harsh conditions, limiting its application as a gas-sensitive material.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, 252-5210, Japan.
Electromagnetic whistler-mode chorus waves are a key driver of variations in energetic electron fluxes in the Earth's magnetosphere through the wave-particle interaction. Traditionally understood as a diffusive process, these interactions account for long-term electron flux variations (> several minutes). However, theories suggest that chorus waves can also cause rapid (< 1 s) electron acceleration and significant flux variations within less than a second through a nonlinear wave-particle interaction.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into HO efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), utilizing the generated HO, resulting in a distinct color change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!