In this work, activated carbon (AC) was synthesized and then modified using nickel(II) oxide and copper(II) oxide. Pure-AC, 10, 20, 30, and 40 wt % nanohybrid NiO-CuO/AC nanocomposites (χ-NC/AC NCs) were characterized using XRD, IR, EDS, surface area, and FE-SEM techniques. Furthermore, the adsorbents obtained were tested for their ability to remove hazardous Pb(II) and Cd(II) from water. The fabricated -NC/AC NC adsorbents showed the highest adsorptive performance toward the adsorption of Pb(II) and Cd(II) from water. The 30-NC/AC NC adsorbent showed the complete removal of Pb(II) at pH = 5 and Cd(II) at pH = 7 within 30 min. Overall, the obtained superior experimental results suggest that the adsorptive performance of AC was greatly enhanced after loading hybrid metal oxide nanoparticles, so its application in water treatment is potential and applicable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9773935PMC
http://dx.doi.org/10.1021/acsomega.2c06352DOI Listing

Publication Analysis

Top Keywords

pbii cdii
12
cdii water
8
adsorptive performance
8
facile synthesis
4
synthesis nio-cuo/activated
4
nio-cuo/activated carbon
4
carbon nanocomposites
4
nanocomposites removal
4
removal lead
4
lead cadmium
4

Similar Publications

Nano-Fibrillated Bacterial Cellulose Nanofiber Surface Modification with EDTA for the Effective Removal of Heavy Metal Ions in Aqueous Solutions.

Materials (Basel)

January 2025

Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan.

Nano-fibrillated bacterial cellulose (NFBC) has very long fibers (>17 μm) with diameters of approximately 20 nm. Hence, they have a very high aspect ratio and surface area. The high specific surface area of NFBC can potentially be utilized as an adsorbent.

View Article and Find Full Text PDF

Occurrence, bioaccumulation, and ecological and health risks of Cd, Sn, Hg, and Pb compounds in shrimp and fish from aquaculture ponds.

J Hazard Mater

January 2025

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Aquaculture organisms may accumulate metals to induce health risks. Compared with the focus on total contents, chemical-specific risk assessment makes reasonable but is rare. Herein, we elucidated occurrence of twelve metal compounds in shrimp and fish (edible muscle, one of major metal-containing and generally targeted organs), water, sediment, and feedstuff from two aquaculture ponds in Zhejiang Province (one of the major aquatic production and consumption areas).

View Article and Find Full Text PDF

Rapid on-site determination of heavy metals and metalloids in contaminated biochar samples by accelerated leaching process coupled with voltammetric sensors.

Talanta

January 2025

Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore. Electronic address:

Heavy metals and metalloids are the most common environmental pollutants. Toxicity characteristic leaching procedure (TCLP) is a standard operating procedure that is used to assess heavy metal and metalloid compositions, and evaluate the hazardous nature of waste and waste-derived materials for reuse or disposal, such as determining landfill suitability. However, TCLP and the following detections are time-consuming and require bulky laboratory-based instruments and trained personnel.

View Article and Find Full Text PDF

Light-driven in-situ synthesis of nano-sulfur and graphene oxide composites for efficient removal of heavy metal ions.

J Hazard Mater

January 2025

State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:

Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.

View Article and Find Full Text PDF

A Schiff base-functionalized chitosan magnetic bio-nanocomposite for efficient removal of Pb (II) and Cd (II) ions from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran; Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran. Electronic address:

The rapid industrialization and human activities in catchments have posed notable global challenges in removing of heavy metal contaminants from wastewater. Here, Schiff-bases (SB) of cyanoguanidine (CG) and salicylaldehyde (SA) were covalently grafted on a magnetic nanocomposite of chitosan to form a hybrid magnetic nanostructure (FeO@CS-CGSB). The synthesized structure was characterized using various techniques such as Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), zeta potential, and Brunauer-Emmett-Teller surface area analysis (BET).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!