A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing the Performance of AlN and AlP Nanostructured Materials for Alkali Metal Ion (Li, Na, K) Batteries. | LitMetric

This study focused on the potential of aluminum nitride (AlN) and aluminum phosphide (AlP) nanomaterials as anode electrodes of lithium-ion (Li-ion), sodium-ion (Na-ion), and potassium-ion (K-ion) batteries as investigated via density functional theory (DFT) calculations at PBE0-D3, M062X-D3, and DSDPBEP86 as the reference method. The results show that the Li-ion battery has a higher cell voltage with a binding energy of -1.210 eV and higher reduction potential of -6.791 kcal/mol compared to the sodium and potassium ion batteries with binding energies of -0.749 and -0.935 eV and reduction potentials of -6.414 and -6.513 kcal/mol, respectively, using AlN material. However, in AlP, increases in the binding energy and reduction potential were observed in the K-ion battery with values -1.485 eV and -7.535 kcal/mol higher than the Li and Na ion batteries with binding energy and reduction potential -1.483, -1.311 eV and -7.071, -7.184 eV, respectively. Finally, AlN and AlP were both proposed as novel anode electrodes in Li-ion and K-ion batteries with the highest performances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9773795PMC
http://dx.doi.org/10.1021/acsomega.2c04319DOI Listing

Publication Analysis

Top Keywords

ion batteries
12
binding energy
12
reduction potential
12
aln alp
8
anode electrodes
8
k-ion batteries
8
batteries binding
8
energy reduction
8
batteries
5
assessing performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!