Tooth enamel develops within a pH sensitive amelogenin-rich protein matrix. The purpose of the present study is to shed light on the intimate relationship between enamel matrix pH, enamel protein self-assembly, and enamel crystal growth during early amelogenesis. Universal indicator dye staining revealed highly acidic pH values (pH 3-4) at the exocytosis site of secretory ameloblasts. When increasing the pH of an amelogenin solution from pH 5 to pH 7, there was a gradual increase in subunit compartment size from 2 nm diameter subunits at pH 5 to a stretched configuration at pH6 and to 20 nm subunits at pH 7. HSQC NMR spectra revealed that the formation of the insoluble amelogenin self-assembly structure at pH6 was critically mediated by at least seven of the 11 histidine residues of the amelogenin coil domain (AA 46-117). Comparing calcium crystal growth on polystyrene plates, crystal length was more than 20-fold elevated at pH 4 when compared to crystals grown at pH 6 or pH 7. To illustrate the effect of pH on enamel protein self-assembly at the site of initial enamel formation, molar teeth were immersed in phosphate buffer at pH4 and pH7, resulting in the formation of intricate berry tree-like assemblies surrounding initial enamel crystal assemblies at pH4 that were not evident at pH7 nor in citrate buffer. Amelogenin and ameloblastin enamel proteins interacted at the secretory ameloblast pole and in the initial enamel layer, and co-immunoprecipitation studies revealed that this amelogenin/ameloblastin interaction preferentially takes place at pH 4-pH 4.5. Together, these studies highlight the highly acidic pH of the very early enamel matrix as an essential contributing factor for enamel protein structure and self-assembly, apatite crystal growth, and enamel protein interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772882 | PMC |
http://dx.doi.org/10.3389/fphys.2022.1019364 | DOI Listing |
Int J Mol Sci
January 2025
Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland.
Molar incisor hypomineralization (MIH) is a developmental defect that affects the enamel tissue of permanent teeth. Clinicians may observe a range of opacities in the affected teeth, varying from white to creamy, yellow, and brown. Of particular interest is an etiology of MIH that has not been rigorously elucidated.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
Objective: To analyze gene mutation found in a pedigree with clinical features and inheritable pattern consistent with amelogenesis imperfecta (AI) in China, and to study the relationship between its genotype and phenotype.
Methods: Clinical and radiological features were recorded for the affected individuals. Peripheral venous blood samples of the patient and family members were collected for further study, and the genomic DNA was extracted to identify the pathogenic gene.
Dev Dyn
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Background: Endocytosis of enamel matrix proteins (EMPs) by ameloblasts is a key process in the mineralization of enamel during the maturation stage of amelogenesis. However, the relevant receptor mediating endocytosis of EMPs is still unclear. The aim of this study was to explore potential endocytic receptors involved in this process.
View Article and Find Full Text PDFGels
December 2024
Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
This study investigates the microstructure of dental enamel following demineralization and re-mineralization processes, using DIAGNOdent scores and images obtained via scanning electron microscopy (SEM), atomic force microscopy (AFM), and microhardness (Vickers). The research evaluates the effects of two experimental hydrogels, Anti-Amelogenin isoform X (ABT260, S1) and Anti-Kallikrein L1 (K3014, S2), applied to demineralized enamel surfaces over periods of 14 and 21 days. The study involved 60 extracted teeth, free from cavities or other lesions, divided into four groups: a positive group (+), a negative group (-) and groups S1 and S2.
View Article and Find Full Text PDFJ Taibah Univ Med Sci
February 2025
Department of Prosthodontics/Dental Material, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, India.
Objectives: Calcium ions (Ca) play crucial role in tooth development, particularly in maintaining enamel density during amelogenesis. Ameloblasts require specific proteins such as amelogenin, ameloblastin, enamelin, kallikrein, and collagen for enamel growth. Recent research has highlighted the importance of calcium and fluoride ions, as well as the TRPM7, STIM, and SOCE pathways, in regulating various stages of enamel formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!