Green Process for Xylooligosaccharides Production using an Pulp.

J Polym Environ

Chemical Engineering Department, Instituto Superior Técnico, Avenida Rovisco Pais, 1, 1049-001 Lisbon, Portugal.

Published: December 2022

AI Article Synopsis

Article Abstract

Xylooligosaccharides (XOS) are oligomers with recognized and important prebiotic properties, whose consumption is associated with several health benefits, including a positive impact on the immune system. In this work, XOS were produced through a green process of enzymatic hydrolysis performed directly on an intermediate product from a pulp and paper industry, bleached pulp. Focusing on an industrial, sustainable and more economical application, two goals were defined and validated: (i) no pretreatment of the substrate and (ii) the replacement of the commonly used buffer solution as reaction medium for only water. The influence of the most relevant operating conditions on the production of XOS as well as the respective yields obtained were very similar when using either buffer or water as the reaction medium. For the use of water, although the solution pH decreases during the enzymatic reaction, this change did not affect the production of XOS. For the optimized conditions, 80 °C and 100 U/g pulp, a maximum yield of 31.4 ± 2.6% per total xylan in the pulp was obtained, resulting in more than 50 kg of XOS per ton of pulp. The correspondent hydrolysate was mainly composed by xylobiose (66%) and xylotriose (29%), oligomers with the highest prebiotic effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758683PMC
http://dx.doi.org/10.1007/s10924-022-02728-3DOI Listing

Publication Analysis

Top Keywords

green process
8
reaction medium
8
medium water
8
production xos
8
pulp
5
xos
5
process xylooligosaccharides
4
xylooligosaccharides production
4
production pulp
4
pulp xylooligosaccharides
4

Similar Publications

Comprehensive Chlorine Suppression: Advances in Materials and System Technologies for Direct Seawater Electrolysis.

Nanomicro Lett

January 2025

State Key Laboratory of Heavy Oil Processing, College of New Energy, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.

Seawater electrolysis offers a promising pathway to generate green hydrogen, which is crucial for the net-zero emission targets. Indirect seawater electrolysis is severely limited by high energy demands and system complexity, while the direct seawater electrolysis bypasses pre-treatment, offering a simpler and more cost-effective solution. However, the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis's efficiency.

View Article and Find Full Text PDF

miR-224-5p Suppresses Non-Small Cell Lung Cancer via IL6ST-Mediated Regulation of the JAK2/STAT3 Pathway.

Thorac Cancer

January 2025

Department of Thoracic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.

Background: Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).

Methods: We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Phosphorus-solubilizing fungi promote the growth of P. Y. Li by regulating physiological and biochemical reactions and protecting enzyme system-related gene expression.

Front Genet

January 2025

Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China.

Introduction: P. Y. Li is a plant used to treat respiratory diseases such as pneumonia, bronchitis, and influenza.

View Article and Find Full Text PDF

Advanced 3D bioprinted liver models with human-induced hepatocytes for personalized toxicity screening.

J Tissue Eng

January 2025

Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Institutes of Health Science, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

The development of advanced models for assessing liver toxicity and drug responses is crucial for personalized medicine and preclinical drug development. 3D bioprinting technology provides opportunities to create human liver models that are suitable for conducting high-throughput screening for liver toxicity. In this study, we fabricated a humanized liver model using human-induced hepatocytes (hiHeps) derived from human fibroblasts via a rapid and efficient reprogramming process.

View Article and Find Full Text PDF

In order to improve the drying quality of winter jujube slices and find the best drying process parameters, RF + HA (radio frequency combined hot air) drying technology was used in this study to study the effects of plate spacing, RF application time, and RF interval time on the quality of winter jujube slices. Vitamin C () content, red and green value (), and drying rate () were used as quality indexes, and the changing trend of texture properties was analyzed. According to the conclusion of the single-factor experiment, the orthogonal experiment is carried out, and the parameters of each factor in the orthogonal experiment are optimized by the comprehensive balance method and matrix analysis method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!