Integrating supercomputing and artificial intelligence for life science.

Patterns (N Y)

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China.

Published: December 2022

Jiahua Rao and Shuangjia Zheng are Ph.D. students in Prof. Yang's lab (Supercomputing And AI for Life science, SAIL Lab) at Sun Yat-sen University. They recently developed an interpretable framework to quantitatively assess the interpretability of Graph Neural Network (GNN) and made comparison with medicinal chemists. Their meaningful benchmarking and rigorous framework would greatly benefit development of new interpretable methods in GNNs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768675PMC
http://dx.doi.org/10.1016/j.patter.2022.100653DOI Listing

Publication Analysis

Top Keywords

life science
8
integrating supercomputing
4
supercomputing artificial
4
artificial intelligence
4
intelligence life
4
science jiahua
4
jiahua rao
4
rao shuangjia
4
shuangjia zheng
4
zheng phd
4

Similar Publications

Background: Assessing player readiness is crucial in elite basketball. This study aims to provide a practical method for monitoring player readiness through the handgrip test and identify associations with wellness scales.

Methods: Fifteen players (age: 25.

View Article and Find Full Text PDF

Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.

View Article and Find Full Text PDF

Pharmacogenomics stands as a pivotal driver toward personalized medicine, aiming to optimize drug efficacy while minimizing adverse effects by uncovering the impact of genetic variations on inter-individual outcome variability. Despite its promise, the intricate landscape of drug metabolism introduces complexity, where the correlation between drug response and genes can be shaped by numerous nongenetic factors, often exhibiting heterogeneity across diverse subpopulations. This challenge is particularly pronounced in datasets such as the International Warfarin Pharmacogenetic Consortium (IWPC), which encompasses diverse patient information from multiple nations.

View Article and Find Full Text PDF

Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis.

Development

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.

View Article and Find Full Text PDF

Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!