Abstract: Metals and alloys are among the most technologically important materials for our industrialized societies. They are the most common structural materials used in cars, airplanes and buildings, and constitute the technological core of most electronic devices. They allow the transportation of energy over great distances and are exploited in critical parts of renewable energy technologies. Even though primary metal production industries are mature and operate optimized pyrometallurgical processes, they extensively rely on cheap and abundant carbonaceous reactants (fossil fuels, coke), require high power heating units (which are also typically powered by fossil fuels) to calcine, roast, smelt and refine, and they generate many output streams with high residual energy content. Many unit operations also generate hazardous gaseous species on top of large CO emissions which require gas-scrubbing and capture strategies for the future. Therefore, there are still many opportunities to lower the environmental footprint of key pyrometallurgical operations. This paper explores the possibility to use greener reactants such as bio-fuels, bio-char, hydrogen and ammonia in different pyrometallurgical units. It also identifies all recycled streams that are available (such as steel and aluminum scraps, electronic waste and Li-ion batteries) as well as the technological challenges associated with their integration in primary metal processes. A complete discussion about the alternatives to carbon-based reduction is constructed around the use of hydrogen, metallo-reduction as well as inert anode electrometallurgy. The review work is completed with an overview of the different approaches to use renewable energies and valorize residual heat in pyrometallurgical units. Finally, strategies to mitigate environmental impacts of pyrometallurgical operations such as CO capture utilization and storage as well as gas scrubbing technologies are detailed. This original review paper brings together for the first time all potential strategies and efforts that could be deployed in the future to decrease the environmental footprint of the pyrometallurgical industry. It is primarily intended to favour collaborative work and establish synergies between academia, the pyrometallurgical industry, decision-makers and equipment providers.

Highlights: A more sustainable production of metals using greener reactants, green electricity or carbon capture is possible and sometimes already underway. More investments and pressure are required to hasten change.

Discussion: Is there enough pressure on the aluminum and steel industries to meet the set climate targets?The greenhouse gas emissions of existing facilities can often be partly mitigated by retrofitting them with green technologies, should we close plants prematurely to build new plants using greener technologies?Since green or renewable resources presently have limited availability, in which sector should we use them to maximize their benefits?

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9766879PMC
http://dx.doi.org/10.1557/s43581-022-00042-yDOI Listing

Publication Analysis

Top Keywords

greener reactants
12
renewable energies
8
pyrometallurgical
8
pyrometallurgical processes
8
primary metal
8
fossil fuels
8
environmental footprint
8
pyrometallurgical operations
8
pyrometallurgical units
8
pyrometallurgical industry
8

Similar Publications

Nanoarchitectonics of tunable aminosalicylate sodium encapsulated gold nanoparticles enabling multi-faceted role as capping, reducing, stabilizing and colorimetric detection of metal ions.

Nanotechnology

October 2024

Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India.

Despite all the advancements in aqueous synthesis of gold nanoparticles, certain features like one-pot/one-step method with minimal reactants using greener solvents are still demanding. The challenge in the aqueous phase synthesis is to balance the nucleation and precise growth of nanoparticles avoiding aggregation. In this work, we report a unique versatile unexplored molecule aminosalicylate sodium (Na-4-ASA) which functions as a capping, reducing, stabilizing and more interestingly as an encapsulating agent for gold nanoparticles.

View Article and Find Full Text PDF

Linking mechanochemistry with the green chemistry principles: Review article.

Heliyon

July 2024

UNESCO Chair in Life Cycle and Climate Change ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain.

The need to explore contemporary alternatives for industrial production has driven the development of innovative techniques that address critical limitations linked to traditional batch mechanochemistry. One particularly promising strategy involves the integration of flow processes with mechanochemistry. Three noteworthy technologies in this domain are single-screw extrusion (SSE) and twin-screw extrusion (TSE) and Impact (Induction) in Continuous-flow Heated Mechanochemistry (ICHeM).

View Article and Find Full Text PDF

Miniaturized and microstructured reactors in process engineering are essential for a more decentralized, flexible, sustainable, and resilient chemical production. Modern, additive manufacturing methods for metals enable complex reactor-geometries, increased functionality, and faster design iterations, a clear advantage over classical subtractive machining and polymer-based approaches. Integrated microsensors allow online, in situ process monitoring to optimize processes like the direct synthesis of hydrogen peroxide.

View Article and Find Full Text PDF

Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness.

View Article and Find Full Text PDF

Reactive deep eutectic solvents for EDC-mediated amide synthesis.

Org Biomol Chem

February 2024

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata of Rende, Italy.

The sustainability of amide bond formation is an ever-present topic in the pharmaceutical industry, as it represents the common motif in many clinically approved drugs. Despite many procedures for accomplishing eco-friendly amide synthesis having been developed, this transformation still remains a contemporary challenge. Herein, we report a greener approach for amide synthesis by using Reactive Deep Eutectic Solvents (RDESs) acting as both the reaction medium and reactants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!