Transient receptor potential (TRP) ion channels play important roles in fundamental biological processes throughout the body of humans and mice. TRP channel dysfunction manifests in different disease states, therefore, these channels may represent promising therapeutic targets in treating these conditions. Many TRP channels are expressed in several organs suggesting multiple functions and making it challenging to untangle the systemic pathophysiology of TRP dysfunction. Detailed characterization of the expression pattern of the individual TRP channels throughout the organism is thus essential to interpret data such as those derived from systemic phenotyping of global TRP knockout mice. Murine TRP channel reporter strains enable reliable labeling of TRP expression with a fluorescent marker. Here we present an optimized method to visualize primary TRP-expressing cells with single cell resolution throughout the entire organism. In parallel, we methodically combine systemic gene expression profiling with an adjusted mass spectrometry protocol to document acute protein levels in selected organs of interest. The TRP protein expression data are then correlated with the GFP reporter expression data. The combined methodological approach presented here can be adopted to generate expression data for other genes of interest and reporter mice.•We present an optimized method to systemically characterize gene expression in fluorescent reporter mouse strains with a single cell resolution.•We methodically combine systemic gene expression profiling with an adjusted mass spectrometry protocol to document acute protein levels in selected organs of interest in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772865PMC
http://dx.doi.org/10.1016/j.mex.2021.101604DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
trp channel
12
gene expression
12
expression data
12
trp
10
expression
9
trp channels
8
expression fluorescent
8
optimized method
8
single cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!