Since the seminal paper by Bates and Granger in 1969, a vast number of ensemble methods that combine different base regressors to generate a unique one have been proposed in the literature. The so-obtained regressor method may have better accuracy than its components, but at the same time it may overfit, it may be distorted by base regressors with low accuracy, and it may be too complex to understand and explain. This paper proposes and studies a novel Mathematical Optimization model to build a sparse ensemble, which trades off the accuracy of the ensemble and the number of base regressors used. The latter is controlled by means of a regularization term that penalizes regressors with a poor individual performance. Our approach is flexible to incorporate desirable properties one may have on the ensemble, such as controlling the performance of the ensemble in critical groups of records, or the costs associated with the base regressors involved in the ensemble. We illustrate our approach with real data sets arising in the COVID-19 context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9759092PMC
http://dx.doi.org/10.1016/j.ejor.2021.04.016DOI Listing

Publication Analysis

Top Keywords

base regressors
16
sparse ensemble
8
ensemble methods
8
ensemble
6
regressors
5
methods application
4
application short-term
4
short-term predictions
4
predictions evolution
4
evolution covid-19
4

Similar Publications

Phenotyping cotton leaf chlorophyll via hyperspectral reflectance sensing, spectral vegetation indices, and machine learning.

Front Plant Sci

November 2024

United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid-Land Agricultural Research Center, Maricopa, AZ, United States.

Cotton ( L.) leaf chlorophyll (Chl) has been targeted as a phenotype for breeding selection to improve cotton tolerance to environmental stress. However, high-throughput phenotyping methods based on hyperspectral reflectance sensing are needed to rapidly screen cultivars for chlorophyll in the field.

View Article and Find Full Text PDF

Leveraging hyperspectral data across various domains yields substantial benefits, yet managing many spectral bands and identifying the essential ones poses a formidable challenge. This study identifies the most relevant bands within a hyperspectral data cube for turbidity prediction in inland water. Nine machine learning regressors Cat Boost, Decision Trees, Extra Trees, Gradient Boost, Light Gradient Boost (LightGBM), Recursive Feature Elimination (RFE), Random Forest, Support Vector Regressor (SVR), and Xtreme Gradient Boost (XGBoost) have been used to compute the feature importance of the hyperspectral bands for predicting turbidity.

View Article and Find Full Text PDF

Prediction of electron-solid interaction parameters using machine learning.

Med Phys

January 2025

Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada.

Background: Electron backscattering coefficient and electron-stopping power are essential concepts in many disciplines, from radiation to materials science, semiconductor manufacturing, and space exploration. They enable precise calculations, measurements, and simulations of electron interactions with matter, which contribute to advancing science, technology, and safety in a variety of applications. The availability of these data is fundamental to scientific research to validate hypotheses, conduct experiments, and explore new theories.

View Article and Find Full Text PDF

The excessive use of fertilizers can lead to increased production costs, degraded soil quality, diminished product excellence, and environmental contamination. To address this issue, a solution involving soil testing and customizing fertilizer application has been proposed. The current standard methodology for soil parameter assessment relies on chemical analysis performed by trained laboratory technicians, which only allows for the measurement of one indicator at a time.

View Article and Find Full Text PDF

Lactate analysis plays an important role in sports science and training decisions for optimising performance, endurance, and overall success in sports. Two parameters are widely used for these goals: aerobic (AeT) and anaerobic (AnT) thresholds. However, determining AeT proves more challenging than AnT threshold due to both physiological intricacies and practical considerations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!