Pharmacological evaluation of antiepileptic drugs (AEDs) using mammalian animals takes long time and is expensive. The zebrafish is a species commonly used to study brain functions, neurological diseases, and drug toxicity, and attracts more attention as an alternative animal model to substitute or supplement mammalian animals in drug development. Electroencephalogram (EEG) is a key indicator for diagnosing brain diseases such as epilepsy, by directly measuring the brain activity. We propose a novel method for pharmacological evaluation of AEDs based on EEG from adult zebrafish, which allows researchers to select more clinically valuable drugs at the early stage of AED screening. To evaluate the efficacy of AEDs, zebrafish EEG signals were measured after administering six AEDs (valproate acid, gabapentin, ethosuximide, oxcarbazepine, tiagabine, and topiramate) at various doses to pentylenetetrazol (PTZ)-induced seizure models. The change in seizure activity was investigated according to doses. The antiepileptic effect was determined by observing a significant decrease in at least one out of three indicators of the number, total duration, and mean duration of ictal events. Using EEG signals from adult zebrafish, antiepileptic effects were observed with all six AEDs. Among them, antiepileptic effects depending on dose were confirmed with valproate acid, gabapentin, ethosuximide, and tiagabine. Moreover, the 50% effective doses (ED50) of valproate acid and tiagabine were determined based on zebrafish EEG for the first time, indicating that the quantitative inter-species comparison of the AED efficacy is possible between zebrafish and mammals such as rodents. The results show that zebrafish can be used to effectively and quantitatively evaluate the efficacy of AEDs based on EEG, the same method to evaluate antiepileptic effects in mammals, suggesting that the proposed method can contribute in reducing the cost and duration of search for AEDs and thus accelerate the drug development cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772616 | PMC |
http://dx.doi.org/10.3389/fphar.2022.1055424 | DOI Listing |
Epilepsia Open
October 2024
AdPueriVitam, Antony, France.
CHD2-related epilepsy is characterized by early-onset photosensitive myoclonic epilepsy with developmental delay and a high rate of pharmacoresistance. We sought to evaluate the efficacy of acetazolamide (ACZ) in CHD2-related epilepsy, due to ACZ's unexpected efficacy in our first patient harboring a pathogenic CHD2 variant. We collected patients from different Eastern European countries with drug-resistant CHD2-related epilepsy who were then treated with ACZ.
View Article and Find Full Text PDFMolecules
May 2024
Department of Molecular Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
Epilepsy is a prevalent neurological disorder characterized by recurrent seizures. Validamycin A (VA) is an antibiotic fungicide that inhibits trehalase activity and is widely used for crop protection in agriculture. In this study, we identified a novel function of VA as a potential anti-seizure medication in a zebrafish epilepsy model.
View Article and Find Full Text PDFACS Chem Neurosci
June 2024
Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
Mapping brain activities is necessary for understanding brain physiology and discovering new treatments for neurological disorders. Such efforts have greatly benefited from the advancement in technologies for analyzing neural activity with improving temporal or spatial resolution. Here, we constructed a multielectrode array based brain activity mapping (BAM) system capable of stabilizing and orienting zebrafish larvae for recording electroencephalogram (EEG) like local field potential (LFP) signals and brain-wide calcium dynamics in awake zebrafish.
View Article and Find Full Text PDFJ Neurosci
April 2024
Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
The mammalian hippocampus exhibits spontaneous sharp wave events (1-30 Hz) with an often-present superimposed fast ripple oscillation (120-220 Hz) to form a sharp wave ripple (SWR) complex. During slow-wave sleep or quiet restfulness, SWRs result from the sequential spiking of hippocampal cell assemblies initially activated during learned or imagined experiences. Additional cortical/subcortical areas exhibit SWR events that are coupled to hippocampal SWRs, and studies in mammals suggest that coupling may be critical for the consolidation and recall of specific memories.
View Article and Find Full Text PDFElife
March 2024
Department of Neuroscience, University of Minnesota Medical School, Minneapolis, United States.
Observations of power laws in neural activity data have raised the intriguing notion that brains may operate in a critical state. One example of this critical state is 'avalanche criticality', which has been observed in various systems, including cultured neurons, zebrafish, rodent cortex, and human EEG. More recently, power laws were also observed in neural populations in the mouse under an activity coarse-graining procedure, and they were explained as a consequence of the neural activity being coupled to multiple latent dynamical variables.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!