Modulation of adipose tissue metabolism by microbial-derived metabolites.

Front Microbiol

Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China.

Published: December 2022

Obesity and its complications, including type 2 diabetes, cardiovascular disease, and certain cancers, have posed a significant burden on health and healthcare systems over the years due to their high prevalence and incidence. Gut microbial derivatives are necessary for the regulation of energy metabolism and host immunity, as well as for maintaining homeostasis of the intestinal environment. Gut flora metabolites may be a link between gut microbes and diseases, such as obesity, and help understand why alterations in the microbiota can influence the pathophysiology of human disease. This is supported by emerging evidence that microbial-derived metabolites, such as short-chain fatty acids, bile acids, tryptophan, trimethylamine-N-oxide, and lipopolysaccharides, can be beneficial or detrimental to the host by affecting organs outside the gut, including adipose tissue. Adipose tissue is the largest lipid storage organ in the body and an essential endocrine organ that plays an indispensable role in the regulation of lipid storage, metabolism, and energy balance. Adipose tissue metabolism includes adipocyte metabolism (lipogenesis and lipolysis), thermogenesis, and adipose tissue metabolic maladaptation. Adipose tissue dysfunction causes the development of metabolic diseases, such as obesity. Here, we review the current understanding of how these microbial metabolites are produced and discuss both established mechanisms and the most recent effects of microbial products on host adipose tissue metabolism. We aimed to identify novel therapeutic targets or strategies for the prevention and treatment of obesity and its complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783635PMC
http://dx.doi.org/10.3389/fmicb.2022.1031498DOI Listing

Publication Analysis

Top Keywords

adipose tissue
28
tissue metabolism
12
microbial-derived metabolites
8
obesity complications
8
diseases obesity
8
lipid storage
8
tissue
7
metabolism
6
adipose
6
modulation adipose
4

Similar Publications

Reduced lipid and glucose oxidation and reduced lipid synthesis in AMPKα2 myotubes.

Arch Physiol Biochem

January 2025

Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.

View Article and Find Full Text PDF

Background: The body weight following bariatric surgery is a primary concern for both healthcare professionals and surgical candidates. However, it remains unclear whether variations in preoperative fat distribution influence weight loss outcomes.

Objective: The aim of this study was to evaluate the effect of abdominal fat distribution on postoperative weight loss and body mass index (BMI) reduction, and to clarify the role of different fat depots in weight loss outcomes.

View Article and Find Full Text PDF

Change in adiposity indices after 1 year of peritoneal dialysis: a single-center cohort study.

Clin Kidney J

January 2025

Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong, China.

Background: Weight gain is common after starting peritoneal dialysis (PD). Several adiposity indices have been developed recently as potential indicators of visceral adiposity and lipid accumulation. We aim to investigate the prevalence and prognostic implications of the change in adiposity indices after 1 year of PD.

View Article and Find Full Text PDF

Spinal tissue identification using a Forward-oriented endoscopic ultrasound technique.

Biomed Eng Lett

January 2025

School of Information Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China.

The limited imaging depth of optical endoscope restrains the identification of tissues under surface during the minimally invasive spine surgery (MISS), thus increasing the risk of critical tissue damage. This study is proposed to improve the accuracy and effectiveness of automatic spinal soft tissue identification using a forward-oriented ultrasound endoscopic system. Total 758 ex-vivo soft tissue samples were collected from ovine spines to create a dataset with four categories including spinal cord, nucleus pulposus, adipose tissue, and nerve root.

View Article and Find Full Text PDF

Emerging evidence indicates that astrocytes modulate energy metabolism and homeostasis. However, one important but poorly understood element is the necessity of astrocytes in the control of body weight. Here, we apply viral vector-assisted brain-region selective loss of astrocytes to define physiological roles played by astrocytes in the arcuate nucleus of the hypothalamus (ARH) and to elucidate the involved mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!