Targets of histone H3 lysine 9 methyltransferases.

Front Cell Dev Biol

Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.

Published: December 2022

Histone H3 lysine 9 di- and trimethylation are well-established marks of constitutively silenced heterochromatin domains found at repetitive DNA elements including pericentromeres, telomeres, and transposons. Loss of heterochromatin at these sites causes genomic instability in the form of aberrant DNA repair, chromosome segregation defects, replication stress, and transposition. H3K9 di- and trimethylation also regulate cell type-specific gene expression during development and form a barrier to cellular reprogramming. However, the role of H3K9 methyltransferases extends beyond histone methylation. There is a growing list of non-histone targets of H3K9 methyltransferases including transcription factors, steroid hormone receptors, histone modifying enzymes, and other chromatin regulatory proteins. Additionally, two classes of H3K9 methyltransferases modulate their own function through automethylation. Here we summarize the structure and function of mammalian H3K9 methyltransferases, their roles in genome regulation and constitutive heterochromatin, as well as the current repertoire of non-histone methylation targets including cases of automethylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768651PMC
http://dx.doi.org/10.3389/fcell.2022.1026406DOI Listing

Publication Analysis

Top Keywords

h3k9 methyltransferases
16
histone lysine
8
di- trimethylation
8
methyltransferases
5
h3k9
5
targets histone
4
lysine methyltransferases
4
methyltransferases histone
4
lysine di-
4
trimethylation well-established
4

Similar Publications

Unlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

SET domain bifurcated histone lysine methyltransferase 1 (SETDB1/ESET), a pivotal H3K9 methyltransferase, has been extensively studied since its discovery over two decades ago. SETDB1 plays critical roles in immune regulation, including B cell maturation, T-cell activity modulation, and endogenous retrovirus (ERV) silencing. While essential for normal immune cell function, SETDB1 overexpression in cancer cells disrupts immune responses by suppressing tumor immunogenicity and facilitating immune evasion.

View Article and Find Full Text PDF

Aging is the major risk factor for most human diseases and represents a major socio-economical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process.

View Article and Find Full Text PDF

Mouse embryonic stem cells (mESCs) and other naïve pluripotent stem cells can reverse typical developmental trajectories and, at low frequency, de-differentiate into 2-cell-like cells (2CLCs) that resemble the mammalian embryo during zygotic genome activation (ZGA). This affords the opportunity to reveal molecular principles that govern the pre-implantation stages of mammalian development. We leveraged a multipurpose allele for acute protein depletion and efficient immunoprecipitation to dissect the molecular functions of the chromatin repressor EHMT2, a candidate antagonist of the mESC-to-2CLC transition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!