Solid polymer electrolytes (SPEs) are required to improve battery safety through the elimination of the liquid electrolyte solution in current batteries. This work is focused on the development of a hybrid SPE based on poly(vinylidene fluoride), PVDF, and 1-butyl-3-methylimidazolium cobalt(II) isothiocyanate, [BMIM][(SCN)Co] magnetic ionic liquid (MIL), and its battery cycling behavior at room temperature. The addition of MIL in filler contents up to 40 wt % to the PVDF matrix does not influence the compact morphology of the samples obtained by solvent casting. The polar β-phase of PVDF increases with increasing MIL content, whereas the degree of crystallinity, thermal degradation temperature, and mechanical properties of the MIL/PVDF blends decrease with increasing MIL content. The ionic conductivity of the MIL/PVDF blends increases both with temperature and MIL content, showing the highest ionic conductivity of 7 × 10 mS cm at room temperature for the MIL/PVDF blend with 40 wt % of MIL. The cathodic half-cells prepared with this blend as SPE show good reversibility and excellent cycling behavior at different C-rates, with a discharge capacity of 80 mAh g at a /10-rate with a Coulombic efficiency of 99%. The developed magnetic SPE, with excellent performance at room temperature, shows potential for the implementation of sustainable lithium-ion batteries, which can be further tuned by the application of an external magnetic field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778058 | PMC |
http://dx.doi.org/10.1021/acsapm.2c00789 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!