Inter-sectoral volatility linkages in the Chinese stock market are understudied, especially asymmetries in realized volatility connectedness, accounting for the catastrophic event associated with the COVID-19 outbreak. In this paper, we examine the asymmetric volatility spillover among Chinese stock market sectors during the COVID-19 pandemic using 1-min data from January 2, 2019 to September 30, 2020. In doing so, we build networks of generalized forecast error variances by decomposition of a vector autoregressive model, controlling for overall market movements. Our results show evidence of the asymmetric impact of good and bad volatilities, which are found to be time-varying and substantially intense during the COVID-19 period. Notably, bad volatility spillover shocks dominate good volatility spillover shocks. The findings are useful for Chinese investors and portfolio managers constructing risk hedging portfolios across sectors and for Chinese policymakers monitoring and crafting stimulating policies for the stock market at the sectoral level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9760082PMC
http://dx.doi.org/10.1016/j.irfa.2021.101754DOI Listing

Publication Analysis

Top Keywords

volatility spillover
16
stock market
12
asymmetric volatility
8
spillover chinese
8
sectors covid-19
8
chinese stock
8
spillover shocks
8
chinese
5
volatility
5
spillover
4

Similar Publications

Analyzing the interactions between spot and time charter freight is crucial for the maritime industry. While numerous studies have explored the relationship between average freight indices and spillover effects, a gap remains in understanding the deeper connections between inter-regional shipping routes and chartering contracts. This research investigates the role of Capesize freight dynamics in shaping the regional dry bulk freight market, with a focus on the influence of energy and commodity price fluctuations.

View Article and Find Full Text PDF

This paper selects daily stock market trading data of RCEP member countries from 3 December 2007 to 9 December 2024 and employs the Time-Varying Parameter Vector Autoregression (TVP-VAR) model and transfer entropy to measure the time-varying volatility spillover effects among the stock markets of the sampled countries. The results indicate that the signing of the RCEP has strengthened the interconnectedness of member countries' stock markets, with an overall upward trend in volatility spillover effects, which become even more pronounced during periods of financial turbulence. Within the structure of RCEP member stock markets, China is identified as a net risk receiver, while countries like Japan and South Korea act as net risk spillover contributors.

View Article and Find Full Text PDF

The dry bulk shipping market plays a crucial role in global trade. To examine the volatility, correlation, and risk spillover between freight rates in the BCI and BPI markets, this paper employs the GARCH-Copula-CoVaR model. We analyze the dynamic behavior of the secondary market freight index for dry bulk cargo, highlighting its performance in a complex financial environment and offering empirical support for the shipping industry and financial markets.

View Article and Find Full Text PDF

The current study aims to elicit information regarding the tail risk transmission mechanism between crude oil (CO) and selected clean energy (CE) stock indices across time and during certain economic events. A Time-Varying Parameter Vector Auto-Regressive model (TVP-VAR) paired with the conditional autoregressive value-at-risk (CAViaR) approach was used to investigate data from January 1, 2015 to December 29, 2022. Overall, we show that an increased vulnerability to tail risk and deficits might be linked to dynamic spillover over examined markets.

View Article and Find Full Text PDF

The development of China's National Carbon Market has strengthened the inherent link between the carbon market and the broader energy market, providing a potential for cross-market risk transmission resonance. Studying the risk spillover effects between China's National Carbon Market and the crude oil futures market is of significant practical importance, both in terms of carbon market development and carbon risk management. Based on the Maximal Overlap Discrete Wavelet Transform (MODWT), the price series are decomposed across multiple scales, and the risk spillover effects between the carbon market and the crude oil futures market are examined from both the time domain and the frequency domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!