Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the emergence of multiple side effects on the usage of commercial L-asparaginase formulations, keen interest is provoked to investigate new sources of L-asparaginases that possess antileukemic properties with minimal side effects. The present study reports the cost-effective bench-scale production, homogeneity purification and apoptosis induction potential of a new L-asparaginase preparation from against human leukemia cells. The enzyme is highly specific toward the natural substrate L-asparagine. The study initiated with the enzyme production using cost-effective substrates in which a 3.28-fold enhancement of enzyme activity was achieved in comparison with an unoptimized medium using the central composite experimental design approach. The scale-up of the process in a 3.7-L batch bioreactor resulted in 16.42 ± 0.17 IU/mL of L-asparaginase activity in 24 h. The crude extracellular enzyme was purified to homogeneity using anion exchange chromatography followed by gel filtration chromatography. A single band of approximately 35 kDa molecular weight was obtained on SDS-PAGE, while native PAGE analysis confirmed it to be a tetramer of four identical subunits. The circular dichroism spectroscopic study revealed the + mixed type of secondary structure with 38.7% -helices and 27.4% pleated sheets. The antitumor toxicity exhibited on the MOLT-4 leukemia cells by the new L-asparaginase was revealed using the MTT assay and acridine orange/propidium iodide dual staining for live/dead cells. The flow cytometry analysis established the potential of the purified L-asparaginase to induce the apoptotic cell death mechanism in MOLT-4 leukemia cells. Conclusively, the L-asparaginase of is a highly promising candidate that can be introduced as a new enzyme therapeutic against various leukemia disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772365 | PMC |
http://dx.doi.org/10.1007/s13205-022-03440-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!