The present study quantitatively characterized the proteomic changes in bull spermatozoa induced by the cryopreservation process. We performed high-throughput comparative global proteomic profiling of freshly ejaculated (before cryopreservation), equilibrated (refrigerated storage; during cryopreservation), and frozen (ultralow temperature; after cryopreservation) bull spermatozoa. Using the liquid chromatography-mass spectrometry (LC-MS/MS) technique, a total of 1,692, 1,415, and 1,286 proteins were identified in fresh, equilibrated, and cryopreserved spermatozoa, respectively. When the proteome of fresh spermatozoa was compared with equilibrated spermatozoa, we found that 166 proteins were differentially expressed. When equilibrated spermatozoa were compared with cryopreserved spermatozoa, we found that 147 proteins were differentially expressed between them. Similarly, we found that 156 proteins were differentially expressed between fresh and cryopreserved spermatozoa. Among these proteins, the abundance of 105 proteins was lowered during the equilibration process itself, while the abundance of 43 proteins was lowered during ultralow temperature preservation. Remarkably, the equilibration process lowered the abundance of sperm proteins involved in energy metabolism, structural integrity, and DNA repair and increased the abundance of proteins associated with proteolysis and protein degradation. The abundance of sperm proteins associated with metabolism, cGMP-PKG (cyclic guanosine 3',5'-monophosphate-dependent protein kinase G) signaling, and regulation of the actin cytoskeleton was also altered during the equilibration process. Collectively, the present study showed that the equilibration step in the bull sperm cryopreservation process was the critical point for sperm proteome, during which a majority of proteomic alterations in sperm occurred. These findings are valuable for developing efficient protocols to minimize protein damage and to improve the quality and fertility of cryopreserved bull spermatozoa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787546 | PMC |
http://dx.doi.org/10.3389/fendo.2022.1064956 | DOI Listing |
Pol J Vet Sci
September 2024
Department of Clinics, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal-637 001, India.
The aim of this study was to assess the in vitro penetration rate of antioxidant enriched frozen thawed Kangayam bull semen. For the current investigation, 5-7-year-old Kangayam bulls were used. The semen was collected twice per week and two ejaculates were collected each time.
View Article and Find Full Text PDFScience
December 2024
Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
Methane, a greenhouse gas and energy source, is commonly studied using stable isotope signals as proxies for its formation processes. In subsurface environments, methane often exhibits equilibrium isotopic signals, but the equilibration process has never been demonstrated in the laboratory. We cocultured a hydrogenotrophic methanogen with an H-producing bacterium under conditions (55°C, 10 megapascals) simulating a methane-bearing subsurface.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
Genome-wide collections of yeast strains, known as libraries, revolutionized the way systematic studies are carried out. Specifically, libraries that involve a cellular perturbation, such as the deletion collection, have facilitated key biological discoveries. However, short-term rewiring and long-term accumulation of suppressor mutations often obscure the functional consequences of such perturbations.
View Article and Find Full Text PDFRSC Adv
December 2024
Department of Applied Chemistry, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea.
The allylation of isochromans at the α-position aerobic DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) catalysis is described. This process involves the DDQ oxidation of various isochromans under mild conditions to generate oxocarbenium intermediates, which are effectively stabilized in equilibration in the presence of acid before undergoing allylation. Molecular oxygen and -butyl nitrite are employed as an environmentally benign oxidant and mediator, respectively, in the catalytic cycle.
View Article and Find Full Text PDFChemosphere
December 2024
V.V. Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!