AI Article Synopsis

Article Abstract

Implants are now the standard method of replacing missing or damaged teeth. Despite the improving technologies for the manufacture of implants and the introduction of new protocols for diagnosing, planning, and performing implant placement operations, the percentage of complications in the early postoperative period remains quite high. In this regard, there is a need to develop new methods for preliminary assessment of the patient's condition to predict the success of single implant survival. The intensive development of artificial intelligence technologies and the increase in the amount of digital information that is available for analysis make it relevant to develop systems based on neural networks for auxiliary diagnostics and forecasting. Systems based on artificial intelligence in the field of dental implantology can become one of the methods for forming a second opinion based on mathematical decision making and forecasting. The actual clinical evaluation of a particular case and further treatment are carried out by the dentist, and AI-based systems can become an integral part of additional diagnostics. The article proposes an artificial intelligence system for analyzing various patient statistics to predict the success of single implant survival. As the topology of the neural network, the most optimal linear neural network architectures were developed. The one-hot encoding method was used as a preprocessing method for statistical data. The novelty of the proposed system lies in the developed optimal neural network architecture designed to recognize the collected and digitized database of various patient factors based on the description of the case histories. The accuracy of recognition of statistical factors of patients for predicting the success of single implants in the proposed system was 94.48%. The proposed neural network system makes it possible to achieve higher recognition accuracy than similar neural network prediction systems due to the analysis of a large number of statistical factors of patients. The use of the proposed system based on artificial intelligence will allow the implantologist to pay attention to the insignificant factors affecting the quality of the installation and the further survival of the implant, and reduce the percentage of complications at all stages of treatment. However, the developed system is not a medical device and cannot independently diagnose patients. At this point, the neural network system for analyzing the statistical factors of patients can predict a positive or negative outcome of a single dental implant operation and cannot be used as a full-fledged tool for supporting medical decision-making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768332PMC
http://dx.doi.org/10.3389/fninf.2022.1067040DOI Listing

Publication Analysis

Top Keywords

neural network
28
statistical factors
16
factors patients
16
artificial intelligence
16
network system
12
system analyzing
12
success single
12
proposed system
12
neural
8
system
8

Similar Publications

Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.

View Article and Find Full Text PDF

Accurate energy demand forecasting is critical for efficient energy management and planning. Recent advancements in computing power and the availability of large datasets have fueled the development of machine learning models. However, selecting the most appropriate features to enhance prediction accuracy and robustness remains a key challenge.

View Article and Find Full Text PDF

A framework for assessing reliability of observer annotations of aerial wildlife imagery, with insights for deep learning applications.

PLoS One

January 2025

Division of Biological Sciences, US Fish and Wildlife Southwest Regional Office, Albuquerque, New Mexico, United States of America.

There is growing interest in using deep learning models to automate wildlife detection in aerial imaging surveys to increase efficiency, but human-generated annotations remain necessary for model training. However, even skilled observers may diverge in interpreting aerial imagery of complex environments, which may result in downstream instability of models. In this study, we present a framework for assessing annotation reliability by calculating agreement metrics for individual observers against an aggregated set of annotations generated by clustering multiple observers' observations and selecting the mode classification.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) represents a significant public health challenge, with rates consistently on the rise. Enhancing kidney function prediction could contribute to the early detection, prevention, and management of CKD in clinical practice. We aimed to investigate whether deep learning techniques, especially those suitable for processing missing values, can improve the accuracy of predicting future renal function compared to traditional statistical method, using the Japan Chronic Kidney Disease Database (J-CKD-DB), a nationwide multicenter CKD registry.

View Article and Find Full Text PDF

Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!