Advances in timing research advocate for the existence of two timing mechanisms (automatic vs. controlled) that are related to the level of cognitive control intervening for motor behavior regulation. In the present study, we used the functional near-infrared spectroscopy (fNIRS) cutting-edge technique to examine the hypothesis that prefrontal inhibitory control is needed to perform slow motor activities. Participants were asked to perform a sensorimotor-synchronization task at various paces (i.e., slow, close-to-spontaneous, fast). We contrasted upper-limb circle drawing to a more naturalistic behavior that required whole-body movements (i.e., steady-state walking). Results indicated that whole-body movements led to greater brain oxygenation over the motor regions when compared with upper-limb activities. The effect of motor pace was found in the walking task only, with more bilateral orbitofrontal and left dorsolateral activation at slow versus fast pace. Exploratory analyses revealed a positive correlation between the activation of the orbitofrontal and motor areas for the close-to-spontaneous pace in both tasks. Overall, results support the key role of prefrontal cognitive control in the production of slow whole-body movements. In addition, our findings confirm that upper-limb (laboratory-based) tasks might not be representative of those engaged during everyday-life motor behaviors. The fNIRS technique may be a valuable tool to decipher the neurocognitive mechanisms underlying naturalistic, adaptive motor behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/psyp.14226 | DOI Listing |
Magn Reson Med
January 2025
Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari, Japan.
Purpose: Redox homeostasis plays a key role in regulating the overall health and development of organisms. This study aimed to develop a compact and mobile continuous-wave (CW) electron paramagnetic resonance (EPR) imager to facilitate stable, highly sensitive fast three-dimensional (3D) whole-body imaging of nitroxide-infused mice.
Methods: A multiturn loop gap resonator with a diameter of 30 mm and length of 35 mm was designed for whole-body EPR imaging.
Pest Manag Sci
January 2025
College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
Background: Bursaphelenchus xylophilus is considered a quarantine plant nematode species, that causes major damage to pine ecosystems globally. However, there are few reports on the identification and function of the sex pheromone receptors involved in mating. The function of Bxy-npr-21 as a potential sex pheromone receptor gene was verified from molecules to behaviors in this study.
View Article and Find Full Text PDFSci Rep
January 2025
China Institute of Sport and Health Science, Beijing Sport University, Beijing, 100084, China.
This study explored the effects of training weight and amplitude in whole-body vibration (WBV) on exercise intensity, indicated by oxygen consumption (VO) and heart rate. In LOAD-study: ten participants performed squats under non-WBV and WBV (30 Hz 2 mm) conditions at 0%, 40%, and 80% bodyweight (BW). In AMPLITUDE-study: eight participants performed squats under non-WBV, low-amplitude WBV (30 Hz 2 mm), and high-amplitude WBV (30 Hz 4 mm) conditions with 0% and 40%BW.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Bioelectromagnetics Laboratory, University of Wollongong, Wollongong, Australia.
In this paper, we present the design, RF-EMF performance, and a comprehensive uncertainty analysis of the reverberation chamber (RC) exposure systems that have been developed for the use of researchers at the University of Wollongong Bioelectromagnetics Laboratory, Australia, for the purpose of investigating the biological effects of RF-EMF in rodents. Initial studies, at 1950 MHz, have focused on investigating thermophysiological effects of RF exposure, and replication studies related to RF-EMF exposure and progression of Alzheimer's disease (AD) in mice predisposed to AD. The RC exposure system was chosen as it allows relatively unconstrained movement of animals during exposures which can have the beneficial effect of minimizing stress-related, non-RF-induced biological and behavioral changes in the animals.
View Article and Find Full Text PDFWearable Technol
November 2024
Department of Kinesiology, Iowa State University, Ames, IA, USA.
Placing an inertial measurement unit (IMU) at the 5th lumbar vertebra (L5) is a frequently employed method to assess the whole-body center of mass (CoM) motion during walking. However, such a fixed position approach does not account for instantaneous changes in body segment positions that change the CoM. Therefore, this study aimed to assess the congruence between CoM accelerations obtained from these two methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!